Home
Class 12
MATHS
The value of the integral int(0)^(1)sqr...

The value of the integral `int_(0)^(1)sqrt((1-x)/(1+x))dx` is :

A

`-1`

B

1

C

`pi/2-1`

D

`pi/2 +1`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of integral int_(0)^(1)sqrt((1-x)/(1+x)) dx is

The value of the integral int_0^1sqrt((1-x)/(1+x))dx i s (a) pi/2+1 (b) pi/2-1 (c) -1 (d) 1

The value of the integral int_(-1)^(1)log(x+sqrt(x^(2)+1))dx is

The value of the integral int_(0)^(400pi) sqrt(1-cos2x)dx , is

The value of the integral int_(0)^(1) x(1-x)^(n)dx is -

The value of the integral int_(-a)^(a)(e^(x))/(1+e^(x))dx is

If f(x)=cos(tan^(-1)x) , then the value of the integral int_(0)^(1)xf''(x)dx is

The value of the integral int_(0)^(pi) (1)/(e^(cosx)+1)dx , is

If the value of the integral I=int_(0)^(1)(dx)/(x+sqrt(1-x^(2))) is equal to (pi)/(k) , then the value of k is equal to

The value of integral int_(0)^(1)(log(1+x))/(1+x^(2))dx , is