Home
Class 12
MATHS
If A=[(1,-3), (2,k)] and A^(2) - 4A + 10...

If `A=[(1,-3), (2,k)]` and `A^(2) - 4A + 10I = A`, then k is equal to

A

0

B

`-4`

C

4

D

1 or 4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( k \) such that the equation \( A^2 - 4A + 10I = A \) holds true for the matrix \( A = \begin{pmatrix} 1 & -3 \\ 2 & k \end{pmatrix} \). ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 1 & -3 \\ 2 & k \end{pmatrix} \cdot \begin{pmatrix} 1 & -3 \\ 2 & k \end{pmatrix} \] Calculating the elements: - First row, first column: \( 1 \cdot 1 + (-3) \cdot 2 = 1 - 6 = -5 \) - First row, second column: \( 1 \cdot (-3) + (-3) \cdot k = -3 - 3k \) - Second row, first column: \( 2 \cdot 1 + k \cdot 2 = 2 + 2k \) - Second row, second column: \( 2 \cdot (-3) + k \cdot k = -6 + k^2 \) Thus, \[ A^2 = \begin{pmatrix} -5 & -3 - 3k \\ 2 + 2k & k^2 - 6 \end{pmatrix} \] **Hint for Step 1:** Remember to multiply the rows of the first matrix by the columns of the second matrix and sum the products to get each element. ### Step 2: Calculate \( 4A \) Next, we calculate \( 4A \): \[ 4A = 4 \cdot \begin{pmatrix} 1 & -3 \\ 2 & k \end{pmatrix} = \begin{pmatrix} 4 & -12 \\ 8 & 4k \end{pmatrix} \] **Hint for Step 2:** Simply multiply each element of matrix \( A \) by 4. ### Step 3: Calculate \( 10I \) The identity matrix \( I \) of order 2 is: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] Thus, \[ 10I = 10 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 10 & 0 \\ 0 & 10 \end{pmatrix} \] **Hint for Step 3:** The identity matrix has 1s on the diagonal and 0s elsewhere. Multiply it by 10. ### Step 4: Set up the equation Now we substitute \( A^2 \), \( 4A \), and \( 10I \) into the equation \( A^2 - 4A + 10I = A \): \[ \begin{pmatrix} -5 & -3 - 3k \\ 2 + 2k & k^2 - 6 \end{pmatrix} - \begin{pmatrix} 4 & -12 \\ 8 & 4k \end{pmatrix} + \begin{pmatrix} 10 & 0 \\ 0 & 10 \end{pmatrix} = \begin{pmatrix} 1 & -3 \\ 2 & k \end{pmatrix} \] ### Step 5: Simplify the left side Calculating the left side: \[ \begin{pmatrix} -5 - 4 + 10 & (-3 - 3k) + 12 \\ (2 + 2k) - 8 & (k^2 - 6) - 4k + 10 \end{pmatrix} = \begin{pmatrix} 1 & 9 - 3k \\ -6 + 2k & k^2 - 4k + 4 \end{pmatrix} \] ### Step 6: Set equal to \( A \) Now we set the left side equal to \( A \): \[ \begin{pmatrix} 1 & 9 - 3k \\ -6 + 2k & k^2 - 4k + 4 \end{pmatrix} = \begin{pmatrix} 1 & -3 \\ 2 & k \end{pmatrix} \] ### Step 7: Solve for \( k \) From the first row, second column: \[ 9 - 3k = -3 \implies 3k = 12 \implies k = 4 \] From the second row, first column: \[ -6 + 2k = 2 \implies 2k = 8 \implies k = 4 \] Both equations give us \( k = 4 \). ### Final Answer Thus, the value of \( k \) is: \[ \boxed{4} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

2) If A=[(1,2),(2,1)] and A(AdjA)=K.I then the value of K is

Let S_(k) = (1+2+3+...+k)/(k) . If S_(1)^(2) + s_(2)^(2) +...+S_(10)^(2) = (5)/(12)A , then A is equal to

If for a matrix A, absA=6and adj A= {:[(1,-2,4),(4,1,1),(-1,k,0)]:} , then k is equal to

If x^(2)+y^(2)=a^(2)" and "k=1//a then k is equal to

If A = [ (-3 , 2) , (1, -1)] and I = [(1,0) , (0, 1)] , find the scalar k so that A^2 +I = kA .

If A = [ (-3 , 2) , (1, -1)] and I = [(1,0) , (0, 1)] , find the scalar k so that A^2 +I = kA .

If (3/4)^3+(1 1/2)^3 +(2 1/4)^3 +? upto 15 terms =225k, then k is equal to (A) 108 (B) 9 (C) 27 (D) 54

If (10)^9 + 2(11)^1 (10)^8 + 3(11)^2 (10)^7+...........+10 (11)^9= k (10)^9 , then k is equal to :

If A=[(3,-4),(1,-1)] prove that A^k=[(1+2k,-4k),(k,1-2k)] where k is any positive integer.

Match the following : {:("Column - I" , "Column - II"),("(A) The smallest positive integer for which" (1 +i)^(n)=(1-i)^(n)" is " , "(p) 1"),("(B) If " root3(a+ib) =x +iy and b/y -a/x = k (x^(2) +y^(2)) " then k is equal to " , "(p) -3 " ),("(C) If " x=(1+i)/sqrt2 ", then the value of "1 +x^(2)+x^(4)+x^(6)+x^(8)+x^(10)+....+ x^(2004)+x^(2006) +x^(2008), "(r) 2"),("(D) If the minimum value of " |z+1+i|+|z-1-i|+|2-z|+|3-z| " is k then (k-8) equals " ,"(s)4 "):}