Home
Class 12
MATHS
If f(x) = {{:((sqrt(4+ax)-sqrt(4-ax))/x,...

If `f(x) = {{:((sqrt(4+ax)-sqrt(4-ax))/x,-1 le x lt 0),((3x+2)/(x-8), 0 le x le 1):}` continuous in `[-1,1]`, then the value of a is

A

1

B

`-1`

C

`1/2`

D

`-1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( a \) such that the function \[ f(x) = \begin{cases} \frac{\sqrt{4 + ax} - \sqrt{4 - ax}}{x} & \text{for } -1 \leq x < 0 \\ \frac{3x + 2}{x - 8} & \text{for } 0 \leq x \leq 1 \end{cases} \] is continuous on the interval \([-1, 1]\), we need to ensure that the limits from the left and right at \( x = 0 \) are equal. ### Step 1: Find the limit as \( x \) approaches \( 0 \) from the left For \( x \to 0^- \): \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{\sqrt{4 + ax} - \sqrt{4 - ax}}{x} \] To evaluate this limit, we will rationalize the numerator: \[ \lim_{x \to 0^-} \frac{\sqrt{4 + ax} - \sqrt{4 - ax}}{x} \cdot \frac{\sqrt{4 + ax} + \sqrt{4 - ax}}{\sqrt{4 + ax} + \sqrt{4 - ax}} = \lim_{x \to 0^-} \frac{(4 + ax) - (4 - ax)}{x(\sqrt{4 + ax} + \sqrt{4 - ax})} \] This simplifies to: \[ \lim_{x \to 0^-} \frac{2ax}{x(\sqrt{4 + ax} + \sqrt{4 - ax})} = \lim_{x \to 0^-} \frac{2a}{\sqrt{4 + ax} + \sqrt{4 - ax}} \] As \( x \to 0 \), \( \sqrt{4 + ax} \to 2 \) and \( \sqrt{4 - ax} \to 2 \): \[ \lim_{x \to 0^-} f(x) = \frac{2a}{2 + 2} = \frac{2a}{4} = \frac{a}{2} \] ### Step 2: Find the limit as \( x \) approaches \( 0 \) from the right For \( x \to 0^+ \): \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{3x + 2}{x - 8} \] Substituting \( x = 0 \): \[ \lim_{x \to 0^+} f(x) = \frac{3(0) + 2}{0 - 8} = \frac{2}{-8} = -\frac{1}{4} \] ### Step 3: Set the limits equal for continuity For \( f(x) \) to be continuous at \( x = 0 \): \[ \frac{a}{2} = -\frac{1}{4} \] ### Step 4: Solve for \( a \) Multiplying both sides by 2: \[ a = -\frac{1}{2} \] ### Conclusion The value of \( a \) is \[ \boxed{-\frac{1}{2}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x) = {{:((sqrt(1+kx)-sqrt(1-kx))/(x),if -1 le x lt 0),((2x+1)/(x-1),if 0 le x le 1):} at x = 0 .

f(x) = {{:((sqrt(1+kx)-sqrt(1-kx))/(x),if -1 le x lt 0),((2x+1)/(x-1),if 0 le x le 1):} at x = 0 .

if f(x) ={{:((8^(x)-4^(x)-2^(x)+1)/(x^(2)),xgt0),( x^(2) , x le 0):} is continuous at x=0 , then the value of lamda is

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

If f(x) = {{:( 3x ^(2) + 12 x - 1",", - 1 le x le 2), (37- x",", 2 lt x le 3):}, then

If f(x)=[{:(sqrt(1-x), , , 0 le x le 1),((7x-6)^(-1) , , ,1 le x le 2):} then int_(0)^(2)f(x)dx equals

Show that the function f(x) = {{:(2x+3",",-3 le x lt -2),(x+1",",-2 le x lt 0),(x+2",",0 le x le 1):} is discontinuous at x = 0 and continuous at every point in interval [-3, 1]

Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f ^(-1) (x) is discontinous at x=

f (x)= {{:(2(x+1),,, x le -1),( sqrt(1- x^(2)),,, -1 lt x lt 1), (|||x|-1|-1|,,, x ge1 ):} , then:

The function f(x)={{:(,(x^(2))/(a),0 le x lt 1),(,a,1le x lt sqrt2),(,(2b^(2)-4b)/(x^(2)),sqrt2 le x lt oo):} is a continuous for 0 le x lt oo . Then which of the following statements is correct?