Home
Class 12
MATHS
If y = tan^(-1) (sec x - tan x ) , "the...

If ` y = tan^(-1) (sec x - tan x ) , "then" (dy)/(dx)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative \( \frac{dy}{dx} \) for the function \( y = \tan^{-1}(\sec x - \tan x) \). ### Step-by-Step Solution: 1. **Rewrite the Function**: We start with the given function: \[ y = \tan^{-1}(\sec x - \tan x) \] 2. **Use Trigonometric Identities**: Recall the identities: \[ \sec x = \frac{1}{\cos x} \quad \text{and} \quad \tan x = \frac{\sin x}{\cos x} \] Therefore, we can rewrite \( \sec x - \tan x \) as: \[ \sec x - \tan x = \frac{1}{\cos x} - \frac{\sin x}{\cos x} = \frac{1 - \sin x}{\cos x} \] 3. **Substitute Back into the Function**: Now, substituting this back into our function for \( y \): \[ y = \tan^{-1}\left(\frac{1 - \sin x}{\cos x}\right) \] 4. **Differentiate Using the Chain Rule**: To find \( \frac{dy}{dx} \), we apply the chain rule: \[ \frac{dy}{dx} = \frac{1}{1 + \left(\frac{1 - \sin x}{\cos x}\right)^2} \cdot \frac{d}{dx}\left(\frac{1 - \sin x}{\cos x}\right) \] 5. **Differentiate the Inner Function**: We need to differentiate \( \frac{1 - \sin x}{\cos x} \) using the quotient rule: \[ \frac{d}{dx}\left(\frac{1 - \sin x}{\cos x}\right) = \frac{\cos x \cdot (-\cos x) - (1 - \sin x)(-\sin x)}{\cos^2 x} \] Simplifying this gives: \[ = \frac{-\cos^2 x + (1 - \sin x)\sin x}{\cos^2 x} \] 6. **Combine the Results**: Now, substitute this back into the derivative: \[ \frac{dy}{dx} = \frac{1}{1 + \left(\frac{1 - \sin x}{\cos x}\right)^2} \cdot \frac{-\cos^2 x + (1 - \sin x)\sin x}{\cos^2 x} \] 7. **Simplify**: After simplification, we can evaluate the expression to find \( \frac{dy}{dx} \). 8. **Final Result**: After performing the calculations, we find: \[ \frac{dy}{dx} = -\frac{1}{2} \] ### Final Answer: \[ \frac{dy}{dx} = -\frac{1}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If y = tan ^(-1) (sec x + tan x) , " find " (d^(2) y)/( dx^(2)) at x = (pi)/(4)

If Y = (1 + tan x)/(1 - tan x) , then (dy)/(dx) is

If y = tan^(-1) (x/(1 + 6x^2)) + tan^(-1) ((2x - 1)/(2x + 1)), (AA x > 0) then (dy)/(dx) is equal to

If y="sec"(tan^(-1)x), then (dy)/(dx) at x=1 is equal to: 1/(sqrt(2)) (b) 1/2 (c) 1 (d) sqrt(2)

If y="sec"(tan^(-1)x), then (dy)/(dx) at x=1 is equal to: 1/(sqrt(2)) (b) 1/2 (c) 1 (d) sqrt(2)

If x = a sec theta, y = b tan theta " then " (dy)/(dx) = ?

If tan(x+y)=e^(x+y) , then (dy)/(dx)

If y=btan^(-1)(x/a+tan^(-1) y /x),f i nd (dy)/(dx)dot

If y=sum_(r=1)^(x) tan^(-1)((1)/(1+r+r^(2))) , then (dy)/(dx) is equal to

If y= log tan x + log cotx , then (dy)/(dx) is