Home
Class 12
MATHS
int(sqrt(tanx)+sqrt(cotx))dx is equal to...

`int(sqrt(tanx)+sqrt(cotx))dx` is equal to

A

`sqrt(2)sin^(-1)(sinx+cosx)+C`

B

`sqrt(2)cos^(-1)(sinx-cosx)+C`

C

`sqrt(2)sin^(-1)(sinx-cosx)+C`

D

`sqrt(2)cos^(-1)(sinx+cosx)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int (\sqrt{\tan x} + \sqrt{\cot x}) \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral in terms of sine and cosine: \[ \int \left( \sqrt{\frac{\sin x}{\cos x}} + \sqrt{\frac{\cos x}{\sin x}} \right) \, dx = \int \left( \frac{\sqrt{\sin x}}{\sqrt{\cos x}} + \frac{\sqrt{\cos x}}{\sqrt{\sin x}} \right) \, dx \] ### Step 2: Combine the Terms Next, we can combine the terms under a common denominator: \[ = \int \left( \frac{\sqrt{\sin x} \cdot \sqrt{\sin x} + \sqrt{\cos x} \cdot \sqrt{\cos x}}{\sqrt{\sin x \cos x}} \right) \, dx = \int \frac{\sin x + \cos x}{\sqrt{\sin x \cos x}} \, dx \] ### Step 3: Simplify the Integral Now, we can express \(\sin x + \cos x\) in a more manageable form: \[ = \int \frac{\sqrt{2} \cdot \left( \frac{1}{\sqrt{2}}(\sin x + \cos x) \right)}{\sqrt{\sin x \cos x}} \, dx \] Using the identity \( \sin x + \cos x = \sqrt{2} \sin\left(x + \frac{\pi}{4}\right) \): \[ = \sqrt{2} \int \frac{\sin\left(x + \frac{\pi}{4}\right)}{\sqrt{\sin x \cos x}} \, dx \] ### Step 4: Use Substitution Let \( t = \sin x - \cos x \). Then, differentiate: \[ dt = (\cos x + \sin x) \, dx \] This implies: \[ dx = \frac{dt}{\cos x + \sin x} \] ### Step 5: Express in Terms of \( t \) Now we need to express \( \sin 2x \) in terms of \( t \): \[ \sin^2 x + \cos^2 x - 2 \sin x \cos x = 1 - 2 \sin x \cos x = 1 - \frac{1 - t^2}{2} \] Thus, we have: \[ 1 - t^2 = \sin 2x \] ### Step 6: Substitute Back into the Integral Now we can substitute back into the integral: \[ = \sqrt{2} \int \frac{dt}{\sqrt{1 - t^2}} \] ### Step 7: Integrate The integral of \( \frac{1}{\sqrt{1 - t^2}} \) is: \[ = \sqrt{2} \sin^{-1}(t) + C \] ### Step 8: Substitute \( t \) Back Finally, substituting back for \( t \): \[ = \sqrt{2} \sin^{-1}(\sin x - \cos x) + C \] ### Final Answer Thus, the integral \( \int (\sqrt{\tan x} + \sqrt{\cot x}) \, dx \) is: \[ \sqrt{2} \sin^{-1}(\sin x - \cos x) + C \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int(cos sqrt(x))/( sqrt(x)) dx is equal to

int(sqrt(tanx))/(sinxcosx)dx is equal to.

inte^(sqrt(x))dx is equal to

int(sqrt(x-1))/(x sqrt(x+1))dx " is equal to "

int(sqrt(x))/(1+4sqrt(x^(3)))dx is equal to

int sqrt(e^(x)-1)dx is equal to

int sqrt(1+secx) dx is equal to:

int ( 1+ x + sqrt( x+ x^(2)))/(( sqrt(x) + sqrt( 1+x))dx is equal to

int_(a)^(b) ( sqrt(x))/( sqrt(x) + sqrt(a+b-x))dx is equal to

int sqrt(1+sinx)dx " is equal to "