Home
Class 12
MATHS
If f(x) = sin(lim(t rarr 0)(2x)/picot^(-...

If `f(x) = sin(lim_(t rarr 0)(2x)/picot^(-1) (x/t^2))`, then `int_(-(pi)/(2))^((pi)/(2))f(x)` dx is equal to (where , `x ne0`)

A

`-2`

B

`-1`

C

0

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(x) \, dx \) where \( f(x) = \sin\left(\lim_{t \to 0} \frac{2x}{\pi \cot^{-1}\left(\frac{x}{t^2}\right)}\right) \). ### Step-by-Step Solution: 1. **Understanding \( \cot^{-1} \)**: - Recall that \( \cot^{-1}(y) = \tan^{-1}\left(\frac{1}{y}\right) \). For \( y = \frac{x}{t^2} \), we can rewrite it as: \[ \cot^{-1}\left(\frac{x}{t^2}\right) = \tan^{-1}\left(\frac{t^2}{x}\right) \] 2. **Evaluating the Limit**: - We need to evaluate \( \lim_{t \to 0} \frac{2x}{\pi \tan^{-1}\left(\frac{t^2}{x}\right)} \). - As \( t \to 0 \), \( \frac{t^2}{x} \to 0 \) which implies \( \tan^{-1}\left(\frac{t^2}{x}\right) \to 0 \). - Therefore, we have: \[ \lim_{t \to 0} \tan^{-1}\left(\frac{t^2}{x}\right) = 0 \] 3. **Substituting the Limit into \( f(x) \)**: - Thus, we can substitute this limit back into \( f(x) \): \[ f(x) = \sin\left(\lim_{t \to 0} \frac{2x}{\pi \tan^{-1}\left(\frac{t^2}{x}\right)}\right) = \sin(0) = 0 \] - This means \( f(x) = 0 \) for all \( x \neq 0 \). 4. **Evaluating the Integral**: - Now we can evaluate the integral: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(x) \, dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 0 \, dx = 0 \] 5. **Conclusion**: - The value of the integral is: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(x) \, dx = 0 \] ### Final Answer: The value of the integral is \( 0 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=lim_(t to 0)[(2x)/(pi).tan^(-1)(x/(t^(2)))] ,then f(1) is …….

lim_(x rarr0)(sin^2x)/(1-cosx)

The integral int_(0)^(pi//2) f(sin 2 x)sin x dx is equal to

int_(0)^(pi)(x.sin^(2)x.cosx)dx is equal to

If int_(0)^(x)((t^(3)+t)dt)/((1+3t^(2)))=f(x) , then int_(0)^(1)f^(')(x) dx is equal to

If A=int_0^pi cosx/(x+2)^2 \ dx , then int_0^(pi//2) (sin 2x)/(x+1) \ dx is equal to

If A= int _(0)^(pi) (sin x)/(x ^(2))dx, then int _(0)^(pi//2) (cos 2 x )/(x) dx is equal to:

If f(x)=-int_(0)^(x) log (cos t) dt, then the value of f(x)-2f((pi)/(4)+(x)/(2))+2f((pi)/(4)-(x)/(2)) is equal to

If f(x) = int_(0)^(x)(2cos^(2)3t+3sin^(2)3t)dt , f(x+pi) is equal to :

lim_(x to 0)(int_(-x)^(x) f(t)dt)/(int_(0)^(2x) f(t+4)dt) is equal to