Home
Class 12
MATHS
If x is rational and 4(x^(2)+(1)/(x^(2))...

If x is rational and `4(x^(2)+(1)/(x^(2)))+16(x+(1)/(x))-57=0` , then the product of all possible values of x is

A

4

B

3

C

2

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 4\left(x^2 + \frac{1}{x^2}\right) + 16\left(x + \frac{1}{x}\right) - 57 = 0 \) and find the product of all possible rational values of \( x \), we will follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ 4\left(x^2 + \frac{1}{x^2}\right) + 16\left(x + \frac{1}{x}\right) - 57 = 0 \] ### Step 2: Use substitutions Let \( y = x + \frac{1}{x} \). Then we can express \( x^2 + \frac{1}{x^2} \) in terms of \( y \): \[ x^2 + \frac{1}{x^2} = y^2 - 2 \] Now substitute this back into the equation: \[ 4(y^2 - 2) + 16y - 57 = 0 \] ### Step 3: Simplify the equation Distributing the 4 gives: \[ 4y^2 - 8 + 16y - 57 = 0 \] Combine like terms: \[ 4y^2 + 16y - 65 = 0 \] ### Step 4: Solve the quadratic equation Now we will use the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) where \( a = 4, b = 16, c = -65 \): \[ b^2 - 4ac = 16^2 - 4 \times 4 \times (-65) = 256 + 1040 = 1296 \] Now calculate \( y \): \[ y = \frac{-16 \pm \sqrt{1296}}{2 \times 4} = \frac{-16 \pm 36}{8} \] Calculating the two possible values for \( y \): 1. \( y = \frac{20}{8} = 2.5 \) 2. \( y = \frac{-52}{8} = -6.5 \) ### Step 5: Find \( x \) from \( y \) Now we need to find \( x \) from \( y \): 1. For \( y = 2.5 \): \[ x + \frac{1}{x} = 2.5 \implies x^2 - 2.5x + 1 = 0 \] Using the quadratic formula: \[ x = \frac{2.5 \pm \sqrt{(2.5)^2 - 4 \cdot 1}}{2} = \frac{2.5 \pm \sqrt{6.25 - 4}}{2} = \frac{2.5 \pm \sqrt{2.25}}{2} = \frac{2.5 \pm 1.5}{2} \] This gives: - \( x = \frac{4}{2} = 2 \) - \( x = \frac{1}{2} \) 2. For \( y = -6.5 \): \[ x + \frac{1}{x} = -6.5 \implies x^2 + 6.5x + 1 = 0 \] Using the quadratic formula: \[ x = \frac{-6.5 \pm \sqrt{(6.5)^2 - 4 \cdot 1}}{2} = \frac{-6.5 \pm \sqrt{42.25 - 4}}{2} = \frac{-6.5 \pm \sqrt{38.25}}{2} \] This gives two more values for \( x \). ### Step 6: Calculate the product of all possible values of \( x \) The product of the roots of a quadratic \( ax^2 + bx + c = 0 \) is given by \( \frac{c}{a} \). For \( y = 2.5 \): - The product of roots \( = 1 \) For \( y = -6.5 \): - The product of roots \( = 1 \) Thus, the total product of all possible values of \( x \) is: \[ 2 \times \frac{1}{2} \times \text{(product from } y = -6.5\text{)} \] Since both quadratics yield a product of 1, the overall product is: \[ 1 \times 1 = 1 \] ### Final Answer The product of all possible values of \( x \) is \( \boxed{1} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Find all the possible values of 1/x for x>3 .

Find all possible values of (x^2+1)/(x^2-2) .

Find all possible values of (x^2+1)/(x^2-2) .

If tan^(-1).(1)/(2x+1)+tan^(-1).(1)/(4x+1)=cot^(-1)((x^(2))/(2)) , then the number of all possible values of x is/are

For x in R , find all possible values of |x-3|-2 (ii) 4-|2x+3|

For x in R , find all possible values of (i)|x-3|-2 (ii) 4-|2x+3|

Show that x is rational if : x^(2)=16

If x^2+2ax+a lt 0 AA x in [1, 2] then find set of all possible values of a

-1/8 (8-10x) gt 3x -2 Which of the following describes all possible values of x ?

Events A, B, C are mutually exclusive events such that P(A)=(3x+1)/(3), P(B)=(1-x)/(4) " and " P(C )=(1-2x)/(2) . The set of all possible values of x are in the interval