Home
Class 12
MATHS
Solution set of [sin^-1 x]gt [cos^-1 x]...

Solution set of `[sin^-1 x]gt [cos^-1 x]`. where `[*]` denotes greatest integer function

A

`[1/(sqrt(2)),1]`

B

`(cos 1, sin 1)`

C

`[sin 1, 1]`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Sove [cot^(-1) x] + [cos^(-1) x] =0 , where [.] denotes the greatest integer function

Find number of solutions for equation [sin^(-1)x]=x-[x] , where [.] denotes the greatest integer function.

The number of solutions of [sin x+ cos x]=3+ [- sin x]+[-cos x] (where [.] denotes the greatest integer function), x in [0, 2pi] , is

IF {5 sin x]+ [cos x]+6=0, then range of f(x)=sqrt3 cos x + sin x corresponding to solution set of the given equation is: (where [.] denotes greatest integer function)

STATEMENT -1 : If [sin^(-1)x] gt [cos^(-1)x] ,where [] represents the greatest integer function, then x in [sin1,1] is and STATEMENT -2 : cos^(-1)(cosx)=x,x in [-1,1]

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

The number of solution (s) of equation sin sin^(-1)([x])+cos^(-1)cosx=1 (where denotes the greatest integer function) is

Range of f(x)=sin^(-1)[x-1]+2cos^(-1)[x-2] ([.] denotes greatest integer function)

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

Find the number of solution of the equations |cos x |=[x] , (where [.] denotes the greatest integer function ).