Home
Class 12
CHEMISTRY
At 300 K, A hArr" Product"DeltaG(T)^(@...

At 300 K,
`A hArr" Product"DeltaG_(T)^(@)=-"200 kJ mol"^(-1)`
`BhArr" Product "DeltaG_(T)^(@)=-"50 kJ mol"^(-1)`
Thus, the ratio of equilibrium constant at 300 K

A

100

B

1000

C

10000

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ratio of the equilibrium constants \( K_1 \) and \( K_2 \) for the two reactions given their Gibbs free energy changes (\( \Delta G \)) at 300 K. ### Step-by-Step Solution: 1. **Identify the Gibbs Free Energy Changes**: - For reaction A: \( \Delta G_1 = -200 \, \text{kJ/mol} \) - For reaction B: \( \Delta G_2 = -50 \, \text{kJ/mol} \) 2. **Convert Gibbs Free Energy to Joules**: - Since \( R \) (the gas constant) is typically used in J/(mol·K), we convert \( \Delta G \) from kJ to J: - \( \Delta G_1 = -200 \, \text{kJ/mol} = -200 \times 10^3 \, \text{J/mol} = -200000 \, \text{J/mol} \) - \( \Delta G_2 = -50 \, \text{kJ/mol} = -50 \times 10^3 \, \text{J/mol} = -50000 \, \text{J/mol} \) 3. **Use the Gibbs Free Energy Equation**: - The relationship between Gibbs free energy and the equilibrium constant is given by: \[ \Delta G = -RT \ln K \] - For reaction A: \[ \Delta G_1 = -RT \ln K_1 \implies -200000 = -RT \ln K_1 \] - For reaction B: \[ \Delta G_2 = -RT \ln K_2 \implies -50000 = -RT \ln K_2 \] 4. **Set Up the Equation for the Ratio of Equilibrium Constants**: - Rearranging the equations gives: \[ \ln K_1 = \frac{200000}{RT} \] \[ \ln K_2 = \frac{50000}{RT} \] - To find the ratio \( \frac{K_1}{K_2} \), we can subtract the two equations: \[ \ln K_1 - \ln K_2 = \frac{200000}{RT} - \frac{50000}{RT} \] \[ \ln \left(\frac{K_1}{K_2}\right) = \frac{200000 - 50000}{RT} = \frac{150000}{RT} \] 5. **Substituting Values**: - The gas constant \( R = 8.314 \, \text{J/(mol·K)} \) and \( T = 300 \, \text{K} \): \[ \ln \left(\frac{K_1}{K_2}\right) = \frac{150000}{8.314 \times 300} \] - Calculate \( RT \): \[ RT = 8.314 \times 300 = 2494.2 \, \text{J/mol} \] - Now substitute: \[ \ln \left(\frac{K_1}{K_2}\right) = \frac{150000}{2494.2} \approx 60.1 \] 6. **Exponentiate to Find the Ratio**: - To find the ratio \( \frac{K_1}{K_2} \): \[ \frac{K_1}{K_2} = e^{60.1} \] ### Final Answer: The ratio of the equilibrium constants at 300 K is: \[ \frac{K_1}{K_2} \approx e^{60.1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

For the reaction at 300 K A(g)hArrV(g)+S(g) Delta_(r)H^(@)=-30kJ//mol, Delta_(r)S^(@)=-0.1kJK^(-1).mol^(-1) What is the value of equilibrium constant ?

For the reaction at 300 K , A(g) rarr B(g) + E(g), DeltaH^(@) = -30 KJ mol^(-1) , the decrease in standard entropy is 0.1 KJK^(-1)mol^(-1) .The equilibrium constant K for the reaction is ________.

Calculate DeltaG^(@) (kJ/mol) at 127^(@)C for a reaction with K_("equilibrium")=10^(5) :

The synthesis of ammonia is given as: N_(2)(g)+3H_(2)(g) hArr 2NH_(3)(g), DeltaH^(ɵ)=-92.6 kJ mol^(-1) given K_(c)=1.2 and temperature (T)=375^(@)C On increasing the temperature, the value of equilibrium constant K_(c)

Calculate DeltaG_(r)^(@) of the following reaction Ag^(+)(aq)+cI^(-)(aq)rarrAgCI(s) Given DeltaG_(r)^(@)(AgCI)rarr-109 kJ Mol^(-1) DeltaG_(r)^(@)(CI^(-))rarr-129 kJ Mol^(-1) DeltaG_(r)^(@)(ag^(-))rarr77 kJ Mol^(-1) (i)Represent the above reaction in form of a cel (ii) Calcualte E^(@) of the cel (iii) Find log_(10)K_(sp) of AgCI

For the reaction: CO(g) +H_(2)O(g) hArr CO_(2)(g) +H_(2)(g) (Delta_(r)H)_(300K) = - 41.2 kJ mol^(-1) (Delta_(r)H)_(1200K) =- 33.0 kJ mol^(-1) (Delta_(r)S)_(300K) = - 4.2 xx 10^(-2) kJ mol^(-1) (Delta_(r)S)_(1200K) =- 3.0 xx10^(-2) kJ mol^(-1) Predict the direction of spontaneity of the reaction at 300K and 1200K . also calculated log_(10)K_(p) at 300K and 1200K .

ArarrB, DeltaH= -10 KJ mol^(-1), E_(a(f))=50 KJ mol^(-1) , then E_(a) of BrarrA will be

The standard Gibbs free energies for the reaction at 1773K are given below: C(s) +O_(2)(g) rarr CO_(2)(g), DeltaG^(Theta) =- 380 kJ mol^(-1) 2C(s) +O_(2)(g) hArr 2CO(g),DeltaG^(Theta) =- 500 kJ mol^(-1) Discuss the possibility of reducing Al_(2)O_(3) and PbO with carbon at this temperature, 4Al +3O_(2)(g) rarr 2Al_(2)O_(3)(s),DeltaG^(Theta) =- 22500 kJ mol^(-1) 2Pb +O_(2)(g) rarr 2PbO(s),DeltaG^(Theta) =- 120 kJ mol^(-1)

At 1000^(@)C , Zn_((s)) +(1)/(2)O_(2(g)) to ZnO_((s)), DeltaG^(@)=-360 KJ "mol"^(-1) C_((s)) + (1)/(2)O_(2(g)) to CO_((g)),DeltaG^(@) =-460 KJ "mol"^(-1) The correct statement is

Consider an electrochemical cell : A(s)|A^(n+) (aq. 2M)||B^(2n+) (aq. 1M)|B(s) . The value of DeltaH^(@) for the cell reaction is twice that of DeltaG^(@) at 300 K. If the amf of the cell is zero, the DeltaS^(@) ("in "JK^(-1) mol^(-1)) of the cell reaction per mole of B formed at 300 K is ______ . (Given : In (2) = 0.7, R (universal gas constant) = 8.3 J K^(-1) mol^(-1) . H, S and G are enthalpy, entropy and Gibbs energy, respectively.)