Home
Class 12
CHEMISTRY
Ag(s)+Fe^(3+)(aq) to Ag^(+) (aq)+ Fe^(2+...

`Ag(s)+Fe^(3+)(aq) to Ag^(+) (aq)+ Fe^(2+)(aq)`
Given standard electrode potentials -
` E_(Fe^(3+)//Fe^(2+))^(@)=+0.77V ` and `E_(Ag^(+)//Ag(s)))^(@)=+0.80V`
If the reaction is feasible , enter 1.00 as answer elewise enter 0.00.

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the reaction \( \text{Ag}(s) + \text{Fe}^{3+}(aq) \rightarrow \text{Ag}^+(aq) + \text{Fe}^{2+}(aq) \) is feasible, we will follow these steps: ### Step 1: Identify Oxidation and Reduction - **Oxidation**: Silver (Ag) is oxidized from 0 to +1. Thus, \( \text{Ag}(s) \rightarrow \text{Ag}^+(aq) + e^- \). - **Reduction**: Iron (Fe) is reduced from +3 to +2. Thus, \( \text{Fe}^{3+}(aq) + e^- \rightarrow \text{Fe}^{2+}(aq) \). ### Step 2: Write the Standard Electrode Potentials - Given: - \( E^\circ(\text{Fe}^{3+}/\text{Fe}^{2+}) = +0.77 \, \text{V} \) - \( E^\circ(\text{Ag}^+/Ag) = +0.80 \, \text{V} \) ### Step 3: Determine the Anode and Cathode - **Anode**: The electrode where oxidation occurs (Ag). - **Cathode**: The electrode where reduction occurs (Fe). ### Step 4: Calculate the Standard Cell Potential \( E^\circ_{\text{cell}} \) - The formula for the standard cell potential is: \[ E^\circ_{\text{cell}} = E^\circ_{\text{cathode}} - E^\circ_{\text{anode}} \] - Substituting the values: \[ E^\circ_{\text{cell}} = E^\circ(\text{Fe}^{3+}/\text{Fe}^{2+}) - E^\circ(\text{Ag}^+/Ag) = 0.77 \, \text{V} - 0.80 \, \text{V} = -0.03 \, \text{V} \] ### Step 5: Calculate \( \Delta G \) - The relationship between Gibbs free energy and cell potential is given by: \[ \Delta G^\circ = -nFE^\circ_{\text{cell}} \] where \( n \) is the number of moles of electrons transferred (1 in this case), and \( F \) is Faraday's constant (\( 96485 \, \text{C/mol} \)). - Substituting the values: \[ \Delta G^\circ = -1 \times 96485 \, \text{C/mol} \times (-0.03 \, \text{V}) = 2894.55 \, \text{J/mol} \approx 2.89 \, \text{kJ/mol} \] ### Step 6: Determine Feasibility - Since \( \Delta G^\circ \) is positive, the reaction is not feasible. ### Final Answer - The answer to whether the reaction is feasible is **0.00**. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Standard electrode potentials are Fe^(2+)//Fe, E^(@) = -0.44 V Fe^(3+)//Fe^(2+), E^(@) = +0.77 V If Fe^(3+), Fe^(2+) , and Fe block are kept together, then

If E_(1 )^(0) is standard electrode potential for Fe//Fe^(+2) , E_(2)^(0) is for Fe^(+2)//Fe^Fe^(+3) and E_(3)^(0) is for Fe// Fe^(+3) then the relation between E_(1)^(0), E_(2)^(0) and E_(3)^(0) will be :

If E_(Fe^(3+)//Fe)^(@) and E_(Fe^(2+)//Fe)^(@) are -0.36 V and 0.439 V respectively, then value of E_(Fe^(3+)//Fe^(2+))^(@) is

The equilibrium constant (K) for the reaction Fe^(2+)(aq)+Ag^(+)(aq)toFe^(3+)(aq)+Ag(s) will be Given E^(@)(Fe^(3+)//Fe^(2+))=0.77V, E^(@)(Ag^(+)//Ag)=0.80V

Calculate DeltaG^(@) for the reaction : Cu^(2+)(aq) +Fe(s) hArr Fe^(2+)(aq) +Cu(s) . Given that E_(Cu^(2+)//Cu)^(@) = 0.34 V , E_(Fe^(+2)//Fe)^(@) =- 0.44 V

Given that E_(Fe^(2+)//Fe)^(.)=-0.44V,E_(Fe^(3+)//Fe^(2+))^(@)=0.77V if Fe^(2+),Fe^(3+) and Fe solid are kept together then

If E_(Fe^(2+))^(@)//Fe = -0.441 V and E_(Fe^(3+))^(@)//Fe^(2+) = 0.771 V The standard EMF of the reaction Fe+2Fe^(3+) rarr 3Fe^(2+) will be:

Given, standard electrode potentials, {:(Fe^(3+)+3e^(-) rarr Fe,,,E^(@) = -0.036 " volt"),(Fe^(2+)+2e^(-)rarr Fe,,,E^(@) = - 0.440 " volt"):} The standard electrode potential E^(@) for Fe^(3+) + e^(-) rarr Fe^(2+) is :

Using the standard electrode potentials given in the Table 8.2, predict if the reaction between the following is feasible: Ag^(+)(aq) and Cu(s)

Using the standard electrode potentials given in the Table 8.2, predict if the reaction between the following is feasible: Ag(s) and Fe^(3+)(aq)