Home
Class 12
MATHS
If A,B and C are the angles of a triangl...

If A,B and C are the angles of a triangle and
`|{:(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^(2)A,sinB+sin^(2)B,sinCsin^(2)C):}|` =0
then `Delta` ABC must be .

A

right angled isosceles

B

isosceles

C

equilateral

D

scalene

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to analyze the determinant and apply properties of determinants to find the relationship between the angles A, B, and C of the triangle. ### Step-by-Step Solution: 1. **Write the Determinant**: We start with the determinant: \[ D = \begin{vmatrix} 1 & 1 & 1 \\ 1 + \sin A & 1 + \sin B & 1 + \sin C \\ \sin A + \sin^2 A & \sin B + \sin^2 B & \sin C + \sin^2 C \end{vmatrix} \] Given that \( D = 0 \). 2. **Apply Column Operations**: We can perform column operations to simplify the determinant. Let's subtract the first column from the second and third columns: \[ D = \begin{vmatrix} 1 & 0 & 0 \\ 1 + \sin A & \sin B - \sin A & \sin C - \sin A \\ \sin A + \sin^2 A & \sin^2 B - \sin^2 A & \sin^2 C - \sin^2 A \end{vmatrix} \] 3. **Simplify the Determinant**: The determinant now looks like: \[ D = \begin{vmatrix} 1 & 0 & 0 \\ 1 + \sin A & \sin B - \sin A & \sin C - \sin A \\ \sin A + \sin^2 A & \sin^2 B - \sin^2 A & \sin^2 C - \sin^2 A \end{vmatrix} \] Since the first column has been simplified, we can expand the determinant along the first column. 4. **Factor Out Common Terms**: We can factor out \( \sin B - \sin A \) from the second column and \( \sin C - \sin A \) from the third column: \[ D = (\sin B - \sin A)(\sin C - \sin A) \cdot \begin{vmatrix} 1 & 1 \\ 1 + \sin A & 1 + \sin A \end{vmatrix} \] 5. **Evaluate the Determinant**: The remaining determinant simplifies to: \[ D = (\sin B - \sin A)(\sin C - \sin A) \cdot 0 = 0 \] This indicates that at least one of the factors must be zero. 6. **Conclusion**: Since \( D = 0 \), we have: \[ \sin A = \sin B \quad \text{or} \quad \sin B = \sin C \quad \text{or} \quad \sin A = \sin C \] This implies that at least two angles of the triangle are equal, which means triangle ABC is isosceles. ### Final Answer: The triangle ABC must be **isosceles**.
Promotional Banner

Similar Questions

Explore conceptually related problems

If A, B and C are the angles of a triangle and |(1,1,1),(1 + sin A,1 + sin B,1 + sin C),(sin A + sin^(2) A,sin B + sin^(2)B,sin C + sin^(2) C)|= 0 , then the triangle ABC is

If A,B and C are the angle of a triangle show that |{:(sin2A,sinC,sinB),(sinC,sin2B,sinA),(sinB,sinA,sin2C):}|=0.

In a triangleABC , if |(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^2A,sinB+sin^2B,sinC+sin^2C)|=0 , then prove that triangleABC is an isosceles triangle.

In a triangleABC , if |[1,1,1][1+sinA,1+sinB,1+sinC],[sinA+sin^2A, sinB+sin^2B, sinC+sin^2C]|=0 , then prove that triangleABC is an isosceles triangle.

If A, B, C are the angle of a triangle and |(sinA,sinB,sinC),(cosA,cosB,cosC),(cos^(3)A,cos^(3)B,cos^(3)C)|=0 , then show that DeltaABC is an isosceles.

If in a triangle ABC , (sinA+sinB+sinC)(sinA+sinB-sinC)=3sinAsinB then

Show that: sinAsin(B-C)+sinB sin(C-A)+sinCsin(A-B)=0

If A, B, C are the angles of a triangle ABC and if cosA=(sinB)/(2sinC) , show that the triangle is isosceles.

If A ,Ba n dC are the vetices of a triangle A B C , then prove sine rule a/(sinA)=b/(sinB)=c/(sinC)dot

If A ,Ba n dC are the vetices of a triangle A B C , then prove sine rule a/(sinA)=b/(sinB)=c/(sinC)dot