Home
Class 12
MATHS
If [x] stands for the greatest integar f...

If [x] stands for the greatest integar function, then `int_(4)^(10)([x^(2)]dx)/([x^(2)-28x+196]+[x^(2)])` is

A

`(1)/(3)`

B

6

C

7

D

3

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If [.] stands for the greatest integer function, then int_(1)^(2) [3x]dx is equal to

If [dot] represents the greatest integer function, then int_4^(10)([x^2])/([x^2-28 x+196]+[x^2])dxi se q u a lto 0 (b) 1 (b) 3 (d) none of these

If [x] stands for the greatest integer function, the value of overset(10)underset(4)int([x^(2)])/([x^(2)-28x+196]+[x^(2)])dx , is

int_(2)^(0) x(2-x)^4 dx

Let [] denote the greatest integet function then the value int_0^1.5 x[x^2].dx

int(x^2dx)/(4+x^2)

If [.] denotes the greatest integer function then lim_(x->oo)([x]+[2x]+[3x]+[4x])/x^2 is

Let f(x)=In [cos|x|+(1)/(2)] where [.] denotes the greatest integer function, then int_(x_(1))^(x_(2)) lim_(nto oo)(({f(x)}^(n))/(x^(2)+tan^(2)x))dx is equal to, where x_(1),x_(2) in [(-pi)/(6),(pi)/(6)]

int_(0)^(2) (1)/(4+x+x^(2))dx

If f is an integrable function, show that int_(-a)^af(x^2)dx=2int_0^af(x^2)dx