Home
Class 12
MATHS
Let vecu,vecv and vecw be vectors such t...

Let `vecu,vecv and vecw` be vectors such that `vecu+ vecv + vecw =0` if `|vecu|= 3, |vecv|=4 and |vecw|=5` then `vecu.vecv + vecv .vecw + vecw .vecu ` is

A

`-25`

B

`-27`

C

`28`

D

`25`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{u} \) given that \( \vec{u} + \vec{v} + \vec{w} = 0 \) and the magnitudes of the vectors are \( |\vec{u}| = 3 \), \( |\vec{v}| = 4 \), and \( |\vec{w}| = 5 \). ### Step-by-step Solution: 1. **Use the given equation:** \[ \vec{u} + \vec{v} + \vec{w} = 0 \] This implies that \( \vec{w} = -(\vec{u} + \vec{v}) \). 2. **Square both sides:** Squaring the equation \( \vec{u} + \vec{v} + \vec{w} = 0 \) gives: \[ |\vec{u} + \vec{v} + \vec{w}|^2 = 0 \] Expanding this, we have: \[ |\vec{u}|^2 + |\vec{v}|^2 + |\vec{w}|^2 + 2(\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{u}) = 0 \] 3. **Substitute the magnitudes:** We know: \[ |\vec{u}|^2 = 3^2 = 9, \quad |\vec{v}|^2 = 4^2 = 16, \quad |\vec{w}|^2 = 5^2 = 25 \] So substituting these values gives: \[ 9 + 16 + 25 + 2(\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{u}) = 0 \] 4. **Calculate the sum of squares:** Adding the squares: \[ 9 + 16 + 25 = 50 \] Therefore, the equation becomes: \[ 50 + 2(\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{u}) = 0 \] 5. **Isolate the dot product terms:** Rearranging gives: \[ 2(\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{u}) = -50 \] Dividing by 2: \[ \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{u} = -25 \] ### Final Answer: \[ \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{u} = -25 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let vecu, vecv and vecw be three unit vectors such that vecu + vecv + vecw = veca, vecuxx (vecv xx vecw)= vecb, (vecu xx vecv) xx vecw= vecc, vec a.vecu=3//2, veca.vecv=7//4 and |veca|=2 Vector vecu is

Let vecu and vecv be unit vectors such that vecu xx vecv + vecu = vecw and vecw xx vecu = vecv . Find the value of [vecu vecv vecw ]

If vecu, vecv, vecw are three vectors such that [vecu vecv vecw]=1 , then 3[vecu vecv vecw]-[vecv vecw vecu]-2[vecw vecv vecu]=

If vecu,vecv and vecw are vectors such that vecu+vecv+vecw=vec0 then [vecu+vecv vecv+vecw vecw+vecu])= (A) 1 (B) [vecu vecv vecw] (C) 0 (D) -1

Let vecu, vecv, vecw be three unit vectors such that vecu+vecv+vecw=veca,veca.vecu=3/2, veca.vecv=7/4 |veca|=2, then (A) vecu.vecv=3/2 (B) vecu.vecw=0 (C) vecu.vecw=-1/4 (D) none of these

Let vecu, vecv and vecw be such that |vecu|=1,|vecv|=2 and |vecw|=3 if the projection of vecv " along " vecu is equal to that of vecw along vecu and vectors vecv and vecw are perpendicular to each other then |vecu-vecv + vecw| equals

If vecu and vecv be unit vectors. If vecw is a vector such that vecw+(vecwxxvecu)=vecv then vecu.(vecvxxvecw) will be equal to

If u and v are two non-collinear unit vectors such that |vecu × vecv| = ∣ ​ (vecu − vecv) /2 ​ ∣ ​ , then the value of ∣ vecu ×( vecu × vecv) ∣ ^2 is equal to

If veca and vecb are two non collinear vectors and vecu = veca-(veca.vecb).vecb and vecv=veca x vecb then vecv is

If vecu=veca-vecb , vecv=veca+vecb and |veca|=|vecb|=2 , then |vecuxxvecv| is equal to