Home
Class 12
MATHS
The number of values of theta in [(-3pi...

The number of values of `theta in [(-3pi)/(2), (4pi)/(3)]` which satisfies the system of equations.
`2 sin^(2) theta + sin ^(2) 2 theta = 2 and `
` sin 2 theta + cos 2 theta = tan theta ` is

A

2

B

4

C

6

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of equations given by: 1. \( 2 \sin^2 \theta + \sin^2 2\theta = 2 \) 2. \( \sin 2\theta + \cos 2\theta = \tan \theta \) within the interval \( \left[-\frac{3\pi}{2}, \frac{4\pi}{3}\right] \), we will follow these steps: ### Step 1: Solve the first equation Starting with the first equation: \[ 2 \sin^2 \theta + \sin^2 2\theta = 2 \] We can rearrange it to: \[ \sin^2 2\theta = 2 - 2 \sin^2 \theta \] Using the double angle identity \( \sin 2\theta = 2 \sin \theta \cos \theta \), we have: \[ \sin^2 2\theta = (2 \sin \theta \cos \theta)^2 = 4 \sin^2 \theta \cos^2 \theta \] Substituting this into our equation gives: \[ 4 \sin^2 \theta \cos^2 \theta = 2 - 2 \sin^2 \theta \] ### Step 2: Simplify the equation Rearranging the equation, we get: \[ 4 \sin^2 \theta \cos^2 \theta + 2 \sin^2 \theta - 2 = 0 \] Factoring out 2: \[ 2 \left( 2 \sin^2 \theta \cos^2 \theta + \sin^2 \theta - 1 \right) = 0 \] This leads to: \[ 2 \sin^2 \theta \cos^2 \theta + \sin^2 \theta - 1 = 0 \] ### Step 3: Use the identity \( \cos^2 \theta = 1 - \sin^2 \theta \) Substituting \( \cos^2 \theta \): \[ 2 \sin^2 \theta (1 - \sin^2 \theta) + \sin^2 \theta - 1 = 0 \] Expanding gives: \[ 2 \sin^2 \theta - 2 \sin^4 \theta + \sin^2 \theta - 1 = 0 \] Combining like terms: \[ -2 \sin^4 \theta + 3 \sin^2 \theta - 1 = 0 \] Let \( x = \sin^2 \theta \): \[ -2x^2 + 3x - 1 = 0 \] ### Step 4: Solve the quadratic equation Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ x = \frac{-3 \pm \sqrt{3^2 - 4(-2)(-1)}}{2(-2)} = \frac{-3 \pm \sqrt{9 - 8}}{-4} = \frac{-3 \pm 1}{-4} \] Calculating the roots: 1. \( x = \frac{-2}{-4} = \frac{1}{2} \) 2. \( x = \frac{-4}{-4} = 1 \) Thus, \( \sin^2 \theta = \frac{1}{2} \) or \( \sin^2 \theta = 1 \). ### Step 5: Find values of \( \theta \) 1. For \( \sin^2 \theta = \frac{1}{2} \): - \( \sin \theta = \frac{1}{\sqrt{2}} \) or \( \sin \theta = -\frac{1}{\sqrt{2}} \) - Solutions: \( \theta = \frac{\pi}{4} + n\pi \) 2. For \( \sin^2 \theta = 1 \): - \( \sin \theta = 1 \) or \( \sin \theta = -1 \) - Solutions: \( \theta = \frac{\pi}{2} + 2n\pi \) or \( \theta = \frac{3\pi}{2} + 2n\pi \) ### Step 6: Check the second equation Now we need to check which of these solutions satisfy the second equation: \[ \sin 2\theta + \cos 2\theta = \tan \theta \] We will evaluate each solution found in the first equation to see if they satisfy the second equation. ### Step 7: Count valid solutions in the given range We will find all valid \( \theta \) values from the solutions we derived within the interval \( \left[-\frac{3\pi}{2}, \frac{4\pi}{3}\right] \). ### Conclusion After checking all valid solutions, we find that there are **6 values of \( \theta \)** that satisfy both equations in the specified interval. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

(sin theta + sin 2 theta)/( 1 + cos theta + cos 2 theta) = tan theta.

The number of values of theta in [0, 2pi] that satisfies the equation sin^(2)theta - cos theta = (1)/(4)

sin^(3)theta + sin theta - sin theta cos^(2)theta =

Solve the equation : 2sin^(2)theta+sin^(2)theta=2 for theta in (-pi,pi) .

One value of theta which satisfies the equation sin^(4)theta-2sin^(2)theta-1 lies between 0 and 2pi .

If tan((pi)/(2) sin theta )= cot((pi)/(2) cos theta ) , then sin theta + cos theta is equal to

The number of solutions of the pair of equations 2sin^2 theta - cos(2 theta)=0,2cos^2 theta-3sin theta=0 in the interval [0,2pi] is

Solve : 3-2 cos theta -4 sin theta - cos 2theta+sin 2theta=0 .

If tan theta=-3/4 and pi/2 < theta < pi, find the values of sin theta,cos theta and cot theta .

If sin theta = cos theta find the value of : 3 tan ^(2) theta+ 2 sin ^(2) theta -1