Home
Class 12
MATHS
If int (dx)/(sqrt(x)+root(3)x)=asqrt(x) ...

If `int (dx)/(sqrt(x)+root(3)x)=asqrt(x) + b(root(3)x)+c(root(6)x)+d` In being an arbitary constant then the value of `20a + b+ c+d ` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{dx}{\sqrt{x} + \sqrt[3]{x}}\) and express it in the form \(a\sqrt{x} + b\sqrt[3]{x} + c\sqrt[6]{x} + d\ln{x}\), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int \frac{dx}{\sqrt{x} + \sqrt[3]{x}} \] We can express \(\sqrt{x}\) and \(\sqrt[3]{x}\) in terms of powers of \(x\): \[ \sqrt{x} = x^{1/2}, \quad \sqrt[3]{x} = x^{1/3} \] Thus, the integral becomes: \[ \int \frac{dx}{x^{1/2} + x^{1/3}} \] ### Step 2: Factor Out the Common Term We can factor out \(x^{1/3}\) from the denominator: \[ \int \frac{dx}{x^{1/3}(x^{1/6} + 1)} = \int \frac{x^{-1/3} \, dx}{x^{1/6} + 1} \] ### Step 3: Substitution Let \(x = t^6\). Then, \(dx = 6t^5 \, dt\). Substituting these into the integral gives: \[ \int \frac{6t^5 \, dt}{(t^6)^{-1/3}(t^2 + 1)} = \int \frac{6t^5 \, dt}{t^2 + 1} \] ### Step 4: Simplifying the Integral The integral simplifies to: \[ 6 \int \frac{t^5}{t^2 + 1} \, dt \] We can use polynomial long division on \(\frac{t^5}{t^2 + 1}\): \[ t^5 = (t^3)(t^2 + 1) - t^3 + t^3 \] Thus, \[ \frac{t^5}{t^2 + 1} = t^3 - t^3 + \frac{t^3}{t^2 + 1} = t^3 - t + \frac{t^3}{t^2 + 1} \] ### Step 5: Integrate Each Term Now we can integrate term by term: \[ 6 \left( \int t^3 \, dt - \int t \, dt + \int \frac{t^3}{t^2 + 1} \, dt \right) \] Calculating these integrals: - \(\int t^3 \, dt = \frac{t^4}{4}\) - \(\int t \, dt = \frac{t^2}{2}\) - The integral \(\int \frac{t^3}{t^2 + 1} \, dt\) can be simplified using substitution or partial fractions. ### Step 6: Combine Results After integrating, we will express the result in terms of \(x\) again, substituting back \(t = x^{1/6}\). ### Step 7: Identify Coefficients After simplifying, we will have a result of the form: \[ a\sqrt{x} + b\sqrt[3]{x} + c\sqrt[6]{x} + d\ln{x} \] From this, we can identify the coefficients \(a\), \(b\), \(c\), and \(d\). ### Step 8: Calculate \(20a + b + c + d\) Finally, we will substitute the values of \(a\), \(b\), \(c\), and \(d\) into the expression \(20a + b + c + d\) to find the final answer. ### Final Calculation Assuming we found \(a = 2\), \(b = -3\), \(c = 6\), and \(d = -6\): \[ 20a + b + c + d = 20(2) + (-3) + 6 + (-6) = 40 - 3 + 6 - 6 = 37 \] Thus, the final answer is: \[ \boxed{37} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int (dx)/(root3(x)+root4(x))

int(1+sqrt(x))/(1+root(3)(x))dx

(root3(x)*root6(x))/(root4(x^3)*root9(x^6))

int(root(3)(x^2)-root(4)(x))/(sqrt(x))dx

int\ (root(3)x)(root(5)(1+root(3)(x^4)))dx

Evaluate int(sqrt(1+root(3)(x)))/(root(3)(x^(2)))dx .

Evaluate: int root(3)(x)root(3)(1+root(3)(x^(4)))dx

If root(3)(b^(5))*root(4)(b^(3))=root(3)(b^(x)) for all b ge0 , what is the value of x?

If introot(3)(x).root(5)(1+root(3)(x^(4)))dx=5/8(1+x^(4/a))^((2a)/b)+c (where c is constant of integration), then value of (a+b) is

int(root(3)(1+root(4)(x)))/(sqrtx)\ dx is equal to :