Home
Class 12
MATHS
Given f(x)={(x^2 xx e^(2(x-1)), 0 le x l...

Given `f(x)={(x^2 xx e^(2(x-1)), 0 le x le 1), (acos(2x-2)+bx^2, 1 lt x le2):}` is differentiable at `x=1`, then the value of `|a - b|` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to ensure that the function \( f(x) \) is differentiable at \( x = 1 \). This requires that both the function values and the derivatives from the left and right sides at \( x = 1 \) are equal. ### Step 1: Find \( f(1^-) \) The function for \( 0 \leq x \leq 1 \) is given by: \[ f(x) = x^2 e^{2(x-1)} \] Calculating \( f(1) \): \[ f(1^-) = 1^2 e^{2(1-1)} = 1 \cdot e^0 = 1 \] ### Step 2: Find \( f(1^+) \) The function for \( 1 < x \leq 2 \) is given by: \[ f(x) = a \cos(2x - 2) + b x^2 \] Calculating \( f(1) \): \[ f(1^+) = a \cos(2(1) - 2) + b(1^2) = a \cos(0) + b = a + b \] ### Step 3: Set the function values equal Since the function is differentiable at \( x = 1 \), we have: \[ f(1^-) = f(1^+) \] Thus, \[ 1 = a + b \quad (1) \] ### Step 4: Find \( f'(1^-) \) Now we differentiate \( f(x) = x^2 e^{2(x-1)} \): Using the product rule: \[ f'(x) = \frac{d}{dx}(x^2) \cdot e^{2(x-1)} + x^2 \cdot \frac{d}{dx}(e^{2(x-1)}) \] Calculating the derivatives: \[ \frac{d}{dx}(x^2) = 2x \] \[ \frac{d}{dx}(e^{2(x-1)}) = e^{2(x-1)} \cdot 2 \] Thus, \[ f'(x) = 2x e^{2(x-1)} + x^2 \cdot 2 e^{2(x-1)} = e^{2(x-1)}(2x + 2x^2) \] Now, substituting \( x = 1 \): \[ f'(1^-) = e^{2(1-1)}(2(1) + 2(1^2)) = 1(2 + 2) = 4 \] ### Step 5: Find \( f'(1^+) \) Now we differentiate \( f(x) = a \cos(2x - 2) + b x^2 \): \[ f'(x) = -2a \sin(2x - 2) + 2bx \] Substituting \( x = 1 \): \[ f'(1^+) = -2a \sin(0) + 2b(1) = 0 + 2b = 2b \] ### Step 6: Set the derivatives equal Since the function is differentiable at \( x = 1 \), we have: \[ f'(1^-) = f'(1^+) \] Thus, \[ 4 = 2b \quad (2) \] From this, we can solve for \( b \): \[ b = 2 \] ### Step 7: Substitute \( b \) back into equation (1) Substituting \( b = 2 \) into equation (1): \[ 1 = a + 2 \implies a = 1 - 2 = -1 \] ### Step 8: Find \( |a - b| \) Now we calculate \( |a - b| \): \[ |a - b| = |-1 - 2| = |-3| = 3 \] ### Final Answer Thus, the value of \( |a - b| \) is: \[ \boxed{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If the function f(x)={{:(,-x,x lt 1),(,a+cos^(-1)(x+b),1 le xle 2):} is differentiable at x=1, then (a)/(b) is equal to

If f (x)= {{:(1+x, 0 le x le 2),( 3x-2, 2 lt x le 3):}, then f (f(x)) is not differentiable at:

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

{{:(x^(2)/2, if 0le x le 1),(2x^(2)-3x+3/2, if l lt x le 2):} at x = 1

If f(x) = {{:( 3x ^(2) + 12 x - 1",", - 1 le x le 2), (37- x",", 2 lt x le 3):}, then

If f (x)= [{:((sin [x^(2)]pi)/(x ^(2)-3x+8)+ax ^(3)+b,,, 0 le x le 1),( 2 cos pix + tan ^(-1)x ,,, 1 lt x le 2):} is differentiable in [0,2] then: ([.] denotes greatest integer function)

If f (x)= [{:((sin [x^(2)]pi)/(x ^(2)-3x+8)+ax ^(3)+b,,, 0 le x le 1),( 2 cos pix + tan ^(-1)x ,,, 1 lt x le 2):} is differentiable in [0,2] then: ([.] denotes greatest integer function)

If f(x)={:{(x^2", "x le 1),( x^2-x+1"," x gt1):} then show that f(x) is not differentiable at x=1 .

Let f(x)={{:(,(1)/(|x|),"if "|x| gt 2,"then "f(x)is),(,a+bx^(2), , "if"|x| le2):} is differentiable at x=-2 for

If f(x) = {{:((sqrt(4+ax)-sqrt(4-ax))/x,-1 le x lt 0),((3x+2)/(x-8), 0 le x le 1):} continuous in [-1,1] , then the value of a is