Home
Class 12
CHEMISTRY
The equilibrium constant for CN^(-) + ...

The equilibrium constant for
`CN^(-) + CH_(3)COOH hArr HCN + CH_(3)COO^(-)` is: (Given `pK_(b)` for `CN^(-)` = 4.69 and `pK_(a)` for `CH_(3)COOH = 4.75`)

A

`3.7 xx 10^(4)`

B

`2.8 xx 10^(-5)`

C

`1.97 xx 10^(4)`

D

`0.5 xx 10^(-5)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the equilibrium constant for the reaction: \[ \text{CN}^- + \text{CH}_3\text{COOH} \rightleftharpoons \text{HCN} + \text{CH}_3\text{COO}^- \] we will use the provided \( pK_b \) and \( pK_a \) values. ### Step 1: Determine \( K_a \) for acetic acid (\( \text{CH}_3\text{COOH} \)) Given: - \( pK_a \) for \( \text{CH}_3\text{COOH} = 4.75 \) Using the relationship: \[ K_a = 10^{-pK_a} \] Calculating: \[ K_a = 10^{-4.75} \approx 1.78 \times 10^{-5} \] ### Step 2: Determine \( K_a \) for hydrocyanic acid (\( \text{HCN} \)) Given: - \( pK_b \) for \( \text{CN}^- = 4.69 \) Using the relationship: \[ pK_a + pK_b = 14 \] Thus, \[ pK_a = 14 - pK_b = 14 - 4.69 = 9.31 \] Now, calculate \( K_a \): \[ K_a = 10^{-pK_a} = 10^{-9.31} \approx 4.89 \times 10^{-10} \] ### Step 3: Write the expression for the equilibrium constant \( K_{eq} \) For the reaction: \[ \text{CN}^- + \text{CH}_3\text{COOH} \rightleftharpoons \text{HCN} + \text{CH}_3\text{COO}^- \] The equilibrium constant \( K_{eq} \) can be expressed as: \[ K_{eq} = \frac{[\text{HCN}][\text{CH}_3\text{COO}^-]}{[\text{CN}^-][\text{CH}_3\text{COOH}]} \] ### Step 4: Relate \( K_{eq} \) to \( K_a \) values From the dissociation of acetic acid and hydrocyanic acid, we can relate: \[ K_{eq} = \frac{K_{a(\text{CH}_3\text{COOH})}}{K_{a(\text{HCN})}} \] Substituting the values we calculated: \[ K_{eq} = \frac{1.78 \times 10^{-5}}{4.89 \times 10^{-10}} \] ### Step 5: Calculate \( K_{eq} \) Perform the calculation: \[ K_{eq} \approx \frac{1.78 \times 10^{-5}}{4.89 \times 10^{-10}} \approx 3.63 \times 10^{4} \] ### Conclusion Thus, the equilibrium constant \( K_{eq} \) for the reaction is approximately: \[ K_{eq} \approx 3.63 \times 10^{4} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

NH_(4)OH , NaOH, CH_(3)COOH , H_(2)S

In the equilibrium CH_(3)COOH+HF Leftrightarrow CH_(3)COOH_(2)^(+)+F^(-)

How is CH_(3)OH converted into CH_(3)COOH ?

Find the Van't Hoff factor of a. CH_(3)COOH in H_(2)O , b. CH_(3)COOH in benzene

CH_(3)COOAgdarr+HNO_(3) to AgNO_(3)+CH_(3)COOH

CH_(3)COOAgdarr+HNO_(3) to AgNO_(3)+CH_(3)COOH

The potential of the cell at 25^(@)C is Given pK_(a) of CH_(3)COOH and pK_(b) of NH_(4)OH=4.74

The following equilibrium exists in aqueous solution : CH_(3)COOH to H^(+) + CH_(3)COO^(-) If dilute HCl is added :

Which CH_(3)COOH reacts with CH_(3)-MgX , then

The pH of a solution containing 0.1mol of CH_(3)COOH, 0.2 mol of CH_(3)COONa ,and 0.05 mol of NaOH in 1L. (pK_(a) of CH_(3)COOH = 4.74) is: