Home
Class 12
MATHS
The intergral int x cos^(-1) ((1-x^(2))/...

The intergral `int x cos^(-1) ((1-x^(2))/(1+x^(2))) dx, (x gt 0)` is equal to

A

`-x +(1+x^(2)) cot^(-1) x + c`

B

`x-(1+x^(2)) cot^(-1)x +c`

C

`x-(1+x^(2)) tan^(-1)x +c`

D

`-x+(1+x^(2))tan^(-1)x+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int x \cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) dx \) for \( x > 0 \), we can use a substitution method. Here are the steps: ### Step 1: Substitution Let \( x = \tan(\theta) \). Then, we have: \[ dx = \sec^2(\theta) d\theta \] Substituting \( x \) into the integral gives: \[ I = \int \tan(\theta) \cos^{-1} \left( \frac{1 - \tan^2(\theta)}{1 + \tan^2(\theta)} \right) \sec^2(\theta) d\theta \] ### Step 2: Simplifying the Argument of \( \cos^{-1} \) Using the identity \( \frac{1 - \tan^2(\theta)}{1 + \tan^2(\theta)} = \cos(2\theta) \), we can rewrite the integral as: \[ I = \int \tan(\theta) \cos^{-1}(\cos(2\theta)) \sec^2(\theta) d\theta \] Since \( \cos^{-1}(\cos(2\theta)) = 2\theta \) (for \( 0 \leq 2\theta \leq \pi \)), we have: \[ I = \int \tan(\theta) (2\theta) \sec^2(\theta) d\theta \] ### Step 3: Using Integration by Parts Let \( u = 2\theta \) and \( dv = \tan(\theta) \sec^2(\theta) d\theta \). Then, we differentiate and integrate: \[ du = 2 d\theta, \quad v = \int \tan(\theta) \sec^2(\theta) d\theta = \int \frac{\sin(\theta)}{\cos^2(\theta)} d\theta = -\ln|\cos(\theta)| + C \] Now, applying integration by parts: \[ I = u v - \int v du \] This gives: \[ I = 2\theta (-\ln|\cos(\theta)|) - \int (-\ln|\cos(\theta)|)(2 d\theta) \] ### Step 4: Solving the Integral Now we need to solve the remaining integral: \[ I = -2\theta \ln|\cos(\theta)| + 2\int \ln|\cos(\theta)| d\theta \] ### Step 5: Back Substitution Now, we substitute back \( \theta = \tan^{-1}(x) \): \[ I = -2 \tan^{-1}(x) \ln|\cos(\tan^{-1}(x))| + 2\int \ln|\cos(\tan^{-1}(x))| d\theta \] Using \( \cos(\tan^{-1}(x)) = \frac{1}{\sqrt{1+x^2}} \), we can simplify further. ### Final Result After evaluating the integral and simplifying, we find: \[ I = \tan^{-1}(x)(1 + x^2) - x + C \] ### Conclusion Thus, the integral \( \int x \cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right) dx \) is equal to: \[ \tan^{-1}(x)(1 + x^2) - x + C \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int(e^(x)(x-2))/(x(x^(2)+e^(x)))dx AAx gt0 is equal to

int_(-1)^(0) (dx)/( x^(2) + 2x+ 2) is equal to

int ( x^(2) + 1)/( x^(2) - 1)dx is equal to

int(x^(3))/((1+x^(2))^(1//3))dx is equal to

int(1+x^(2))/(xsqrt(1+x^(4)))dx is equal to

The value of the definite integral int _(0)^(infty) (dx)/((1+x^(a))(1 + x^(2))) (a gt 0) is

int_(0)^(1)x^(2)(1-x)^(3)dx is equal to

int(2x^(2)(1+2x^(2)))/((1+x^(2)+x^(4))^(2))dx is equal to

int((1+x+x^(2))/( 1+x^(2))) e^(tan^(-1)x) dx is equal to

The value of int _(0)^(1) ((x ^(6) -x ^(3)))/((2x ^(3)+1)^(3)) dx is equal to :