Home
Class 12
MATHS
If x =-1 and x=2 ar extreme points of f(...

If x =-1 and x=2 ar extreme points of f(x) =`alpha log|x|+betax^(2)+x` , then

A

`alpha=2, beta=-(1)/(2)`

B

`alpha=2, beta=(1)/(2)`

C

`alpha=-6, beta=(1)/(2)`

D

`alpha=-6, beta=-(1)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If x = -1 and x = 2 are extreme points of f(x) = alpha log|x| + beta x^2 + x , then

If x=-1 and x=""2 are extreme points of f(x)""=alphalog|x|+betax^2+x , then (1) alpha=-6,beta=1/2 (2) alpha=-6,beta=-1/2 (3) alpha=2,beta=-1/2 (4) alpha=2,beta=1/2

For x in R, f(x) = | log 2- sin x| and g(x) = f(f(x)) , then

If f(x)="sin ln" (sqrt(4-x^(2)))/(1-x), then

if f(x) = tan^(1) x -(1//2) ln x. then

Consider f (x) = x ^(ln x), and g (x) = e ^(2) x. Let alpha and beta be two values of x satisfying f (x) = g(x)( alpha lt beta) If h (x) = (f (x))/(g (x)) then h'(alpha) equals to:

The function f(x)=sin(log(x+ sqrt(x^2+1))) ​

The function f(x) = sec[log(x + sqrt(1+x^2))] is

The function f(x) = sec[log(x + sqrt(1+x^2))] is

If f(x)=log_(2)x , then f((2)/(x))+f(x)=