Home
Class 12
MATHS
For x in R, x != 0, if y(x) differential...

For `x in R, x != 0, if y(x)` differential function such that `x int_1^x y(t)dt=(x+1)int_1^x t y(t)dt,` then `y(x)` equals: (where C is a constant.)

A

`Cx^(3)e^(1/x)`

B

`C/(x^(2))e^(-1/x)`

C

`C/xe^(-1/x)`

D

`C/(x^(3))e^(-1/x)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

If int_0^xf(t) dt=x+int_x^1 tf(t)dt, then the value of f(1)

if f(x) is a differential function such that f(x)=int_(0)^(x)(1+2xf(t))dt&f(1)=e , then Q. int_(0)^(1)f(x)dx=

f(x)=int_0^x f(t) dt=x+int_x^1 tf(t)dt, then the value of f(1) is

If int_a^x ty(t)dt=x^2+y(x), then find y(x)

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . y=f(x) is

If f(x)=1+1/x int_1^x f(t) dt, then the value of f(e^-1) is

If f(x)=int_(-1)^(x)|t|dt , then for any xge0,f(x) equals

If f(x)=int_0^x(sint)/t dt ,x >0, then

If phi (x) =int_(1//x)^(sqrt(x)) sin(t^(2))dt then phi ' (1)is equal to