Home
Class 12
MATHS
In a DeltaABC if /A=/B=1/2(sin^(-1)((sq...

In a `DeltaABC` if `/_A=/_B=1/2(sin^(-1)((sqrt(6)+1)/(2sqrt(3)))+sin^(-1)(1/(sqrt(3))))` and length of `c=6.3^(1/4)`, then the area of `DeltaABC`

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of triangle \( \Delta ABC \) given the angles and the length of side \( c \), we can follow these steps: ### Step 1: Calculate the angles \( A \) and \( B \) We are given: \[ \angle A = \angle B = \frac{1}{2} \left( \sin^{-1} \left( \frac{\sqrt{6} + 1}{2\sqrt{3}} \right) + \sin^{-1} \left( \frac{1}{\sqrt{3}} \right) \right) \] ### Step 2: Use the sine addition formula Using the formula for \( \sin^{-1}(x) + \sin^{-1}(y) \): \[ \sin^{-1}(x) + \sin^{-1}(y) = \sin^{-1} \left( x\sqrt{1-y^2} + y\sqrt{1-x^2} \right) \] Let \( x = \frac{\sqrt{6} + 1}{2\sqrt{3}} \) and \( y = \frac{1}{\sqrt{3}} \). ### Step 3: Calculate \( \sqrt{1 - y^2} \) and \( \sqrt{1 - x^2} \) Calculate \( \sqrt{1 - y^2} \): \[ y^2 = \left( \frac{1}{\sqrt{3}} \right)^2 = \frac{1}{3} \implies \sqrt{1 - y^2} = \sqrt{1 - \frac{1}{3}} = \sqrt{\frac{2}{3}} = \frac{\sqrt{6}}{3} \] Calculate \( \sqrt{1 - x^2} \): \[ x^2 = \left( \frac{\sqrt{6} + 1}{2\sqrt{3}} \right)^2 = \frac{7 + 2\sqrt{6}}{12} \implies 1 - x^2 = 1 - \frac{7 + 2\sqrt{6}}{12} = \frac{5 - 2\sqrt{6}}{12} \] Thus, \( \sqrt{1 - x^2} = \sqrt{\frac{5 - 2\sqrt{6}}{12}} \). ### Step 4: Substitute values into the sine addition formula Now substitute back into the sine addition formula: \[ \sin^{-1} \left( \frac{\sqrt{6} + 1}{2\sqrt{3}} \cdot \frac{\sqrt{6}}{3} + \frac{1}{\sqrt{3}} \cdot \sqrt{\frac{5 - 2\sqrt{6}}{12}} \right) \] ### Step 5: Calculate \( \angle C \) Since \( \angle A + \angle B + \angle C = 180^\circ \) and \( \angle A = \angle B \), we can find \( \angle C \). ### Step 6: Calculate the area of triangle \( ABC \) For an isosceles triangle: \[ \text{Area} = \frac{1}{2}ab \sin C \] where \( a = b = c \) and \( c = 6.3^{1/4} \). ### Step 7: Substitute the values Using the area formula for an equilateral triangle: \[ \text{Area} = \frac{\sqrt{3}}{4} s^2 \] where \( s = 6.3^{1/4} \). ### Step 8: Final area calculation \[ \text{Area} = \frac{\sqrt{3}}{4} \left( 6 \cdot 3^{1/4} \right)^2 = \frac{\sqrt{3}}{4} \cdot 36 \cdot 3^{1/2} = \frac{\sqrt{3}}{4} \cdot 36 \cdot \sqrt{3} = \frac{108}{4} = 27 \] Thus, the area of triangle \( \Delta ABC \) is: \[ \boxed{27} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

1. sin^(-1)((1)/(sqrt(2))) 2. cos^(-1)((sqrt(3))/(2))

sin^(-1){cos(sin^(-1)(sqrt(3)/2))}

Show that "sin"^(-1)(sqrt(3))/2+"tan"^(-1)1/(sqrt(3))=(2pi)/3

If sin^(-1)((sqrt(x))/2)+sin^(-1)(sqrt(1-x/4))+tan^(-1)y=(2pi)/3 , then

If x in[-1/2,1] then sin^(-1)(sqrt(3)/(2)x-1/2sqrt(1-x^(2)))

sin(A+B)=1/sqrt(2) cos(A-B)=sqrt3|2

In a DeltaABC if a = 2, b=sqrt(6),c=sqrt(3)+1 , then cos A=

If alpha = sin^(-1)(sqrt(3)/2)+sin^(-1)(1/3) , beta =cos ^(-1)(sqrt(3)/2)+cos^(-1)(1/3) then

In a DeltaABC , if a = 3, b=2sqrt(3) and c=sqrt(3) , then A=

sin^(-1)sqrt((2-sqrt(3))/4)+cos^(-1)(sqrt(12)/4)+sec^(-1)(sqrt(2))= (a) 0 (b) pi/4 (c) pi/6 (d) pi/2