Home
Class 12
MATHS
If I(1) = int(0)^(pi) (x sin x)/(1+cos^2...

If `I_(1) = int_(0)^(pi) (x sin x)/(1+cos^2x) dx , I_(2) = int_(0)^(pi) x sin^(4)xdx` then, `I_(1) : I_(2)` is equal to

A

`3:4`

B

`1:2`

C

`4:3`

D

`2:3`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^( pi)x sin^(-1)xdx

int_(0)^(pi) x sin x cos^(2)x\ dx

(i) int_(0)^( pi)x cos^(2)xdx

If I = int_(0)^(2pi)sin^(2)xdx , then

int_(0)^(pi//2) x sin x cos x dx

If I_(n)=int_(0)^(pi//2) x^(n) sin x dx , then I_(4)+12I_(2) is equal to\

int_(0)^(pi) sin^(4) x cos^(2)xdx =

If I_(n)=int_(0)^(pi) e^(x)sin^(n)x " dx then " (I_(3))/(I_(1)) is equal to

If I_(n)=int_(0)^(pi) e^(x)(sinx)^(n)dx , then (I_(3))/(I_(1)) is equal to

int_(0)^(pi/2)cos^2x sin^2xdx