Home
Class 12
MATHS
The function f(x) = sec[log(x + sqrt(1+x...

The function `f(x) = sec[log(x + sqrt(1+x^2))]` is

A

an odd function

B

an even function

C

neither an odd nor an even function

D

a constant function

Text Solution

AI Generated Solution

The correct Answer is:
To determine the nature of the function \( f(x) = \sec[\log(x + \sqrt{1+x^2})] \), we will check if it is an even function, odd function, or neither. ### Step-by-step Solution: 1. **Define the Function**: \[ f(x) = \sec[\log(x + \sqrt{1+x^2})] \] 2. **Calculate \( f(-x) \)**: We need to find \( f(-x) \): \[ f(-x) = \sec[\log(-x + \sqrt{1+(-x)^2})] \] Simplifying \( \sqrt{1+(-x)^2} \) gives: \[ f(-x) = \sec[\log(-x + \sqrt{1+x^2})] \] 3. **Rationalize the Argument**: We can rewrite the argument of the secant function: \[ -x + \sqrt{1+x^2} = \frac{(-x + \sqrt{1+x^2})(\sqrt{1+x^2} + x)}{\sqrt{1+x^2} + x} \] The numerator simplifies as follows: \[ (-x + \sqrt{1+x^2})(\sqrt{1+x^2} + x) = (1+x^2) - x^2 = 1 \] Thus, \[ f(-x) = \sec[\log\left(\frac{1}{\sqrt{1+x^2} + x}\right)] \] 4. **Using Logarithmic Properties**: We can use the property of logarithms: \[ \log\left(\frac{1}{a}\right) = -\log(a) \] Therefore, we have: \[ f(-x) = \sec[-\log(\sqrt{1+x^2} + x)] \] 5. **Using the Property of Secant**: The secant function has the property: \[ \sec(-\theta) = \sec(\theta) \] Thus: \[ f(-x) = \sec[\log(\sqrt{1+x^2} + x)] \] 6. **Conclusion**: Since \( f(-x) = f(x) \), we conclude that: \[ f(x) \text{ is an even function.} \] ### Final Answer: The function \( f(x) = \sec[\log(x + \sqrt{1+x^2})] \) is an even function.
Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=sin(log(x+ sqrt(x^2+1))) ​

The domain of the function f(x)=sqrt(x-sqrt(1-x^2)) is

The function f(x)=cos(log(x+sqrt(x^2+1))) is :

The function f (x) =1+ x ln (x+ sqrt(1+ x ^(2)))-sqrt(1- x^(2)) is:

The function f(x)=log(x+sqrt(x^(2)+1)) , is (a) an even function (b) an odd function (c ) a periodic function (d) Neither an even nor an odd function.

The function f(x)=log_(10)(x+sqrt(x^(2))+1) is

Domain of the function f(x) = sin(ln(sqrt(4-x^2)/(1-x))) is

Domain of the function f(x)=log(sin^(-1)sqrt(x^(2)+3x+2)) is :

Range of the function f(x)= log_2(sqrt(x-2)+sqrt(4-x)) is

Domain of the function f(x) = log(sqrt(x-4)+sqrt(6-x))