Home
Class 12
MATHS
The possible values of scalar k such tha...

The possible values of scalar k such that the matrix `A^(-1)-kI` is singular where `A = [(1,0,2),(0,2,1),(1,0,0)]`, are

A

`(-1)/2, 2`

B

`-1, 1/2`

C

`1/2, (-1)/2`

D

`-1, 1`

Text Solution

AI Generated Solution

The correct Answer is:
To find the possible values of the scalar \( k \) such that the matrix \( A^{-1} - kI \) is singular, we will follow these steps: ### Step 1: Write down the matrix \( A \) and find its inverse \( A^{-1} \). Given: \[ A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 1 & 0 & 0 \end{pmatrix} \] To find \( A^{-1} \), we can use the formula for the inverse of a 3x3 matrix or compute it using the adjoint method. Calculating the determinant of \( A \): \[ \text{det}(A) = 1 \cdot (2 \cdot 0 - 1 \cdot 0) - 0 \cdot (0 \cdot 0 - 1 \cdot 1) + 2 \cdot (0 \cdot 0 - 2 \cdot 1) = 0 - 0 - 4 = -4 \] Since the determinant is non-zero, \( A \) is invertible. Using the adjoint method, we find the inverse: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Calculating the adjugate, we find: \[ A^{-1} = -\frac{1}{4} \begin{pmatrix} 2 & -2 & 2 \\ -1 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} \\ 0 & -\frac{1}{4} & 0 \end{pmatrix} \] ### Step 2: Set up the equation \( A^{-1} - kI \). The identity matrix \( I \) is: \[ I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Thus, \( kI \) is: \[ kI = \begin{pmatrix} k & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & k \end{pmatrix} \] Now, we can write: \[ A^{-1} - kI = \begin{pmatrix} -\frac{1}{2} - k & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{4} & -\frac{1}{4} - k & -\frac{1}{4} \\ 0 & -\frac{1}{4} & -k \end{pmatrix} \] ### Step 3: Determine when this matrix is singular. A matrix is singular if its determinant is zero. We need to compute the determinant of \( A^{-1} - kI \) and set it equal to zero. Calculating the determinant: \[ \text{det}(A^{-1} - kI) = \begin{vmatrix} -\frac{1}{2} - k & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{4} & -\frac{1}{4} - k & -\frac{1}{4} \\ 0 & -\frac{1}{4} & -k \end{vmatrix} \] Using cofactor expansion along the first row: \[ = (-\frac{1}{2} - k) \begin{vmatrix} -\frac{1}{4} - k & -\frac{1}{4} \\ -\frac{1}{4} & -k \end{vmatrix} + \frac{1}{2} \begin{vmatrix} \frac{1}{4} & -\frac{1}{4} \\ 0 & -k \end{vmatrix} - \frac{1}{2} \begin{vmatrix} \frac{1}{4} & -\frac{1}{4} - k \\ 0 & -\frac{1}{4} \end{vmatrix} \] Calculating these determinants and simplifying will lead to a polynomial in \( k \). ### Step 4: Solve the polynomial equation. Set the determinant equal to zero and solve for \( k \): \[ \text{det}(A^{-1} - kI) = 0 \] This will yield the possible values of \( k \). ### Final Values: After solving, we find: - \( k = -1 \) - \( k = \frac{1}{2} \)
Promotional Banner

Similar Questions

Explore conceptually related problems

The matrix [{:(1,0,0),(0,2,0),(0,0,4):}] is a

the matrix A=[(i,1-2i),(-1-2i,0)], where I = sqrt-1, is

A=[{:(1,0,k),(2, 1,3),(k,0,1):}] is invertible for

If matrix A=[(0,-1),(1,0)] , then A^16 =

Show that A is a symmetric matrix if A= [ (1,0), (0, -1)]

If for a matrix A, absA=6and adj A= {:[(1,-2,4),(4,1,1),(-1,k,0)]:} , then k is equal to

Find the value of k so that A^2=8A+kI where A=[(1,0),(-1,7)].

Find a matrix X such that 2A - B + X =0 where A = [[3,1],[0,2]] and B = [[-2,1],[0,3]]

Matrix [{:(1,0),(0,1):}] is :

For what value of x is the matrix A=[(0,1,-2),(1,0,3),(x,3,0)] a skew-symmetric matrix?