Home
Class 12
MATHS
The negation of p ^^ (q rarr ~ r) is...

The negation of `p ^^ (q rarr ~ r)` is

A

`p ^^ (q ^^ r)`

B

`p vv (q vv r)`

C

`p vv (q ^^ r)`

D

`~ p vv (q ^^ r)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the negation of the statement \( p \land (q \rightarrow \neg r) \), we will follow these steps: ### Step 1: Understand the Given Statement The statement we need to negate is: \[ S = p \land (q \rightarrow \neg r) \] ### Step 2: Rewrite the Implication Recall that an implication \( q \rightarrow \neg r \) can be rewritten using logical equivalence: \[ q \rightarrow \neg r \equiv \neg q \lor \neg r \] Thus, we can rewrite \( S \) as: \[ S = p \land (\neg q \lor \neg r) \] ### Step 3: Apply De Morgan's Law To find the negation of \( S \), we apply De Morgan's Law: \[ \neg S = \neg (p \land (\neg q \lor \neg r)) \] According to De Morgan's Law, this can be expressed as: \[ \neg S = \neg p \lor \neg (\neg q \lor \neg r) \] ### Step 4: Simplify the Negation Next, we simplify \( \neg (\neg q \lor \neg r) \) using De Morgan's Law again: \[ \neg (\neg q \lor \neg r) = q \land r \] Thus, we can rewrite \( \neg S \) as: \[ \neg S = \neg p \lor (q \land r) \] ### Final Result The negation of the statement \( p \land (q \rightarrow \neg r) \) is: \[ \neg S = \neg p \lor (q \land r) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The negation of qvv(p^^r) is

The negation of (~p ^^ q) vv (p ^^ ~ q) is

The inverse of the proposition (p ^^ ~q) rarr r is

The inverse of the proposition (p ^^ ~q) rarr r is

The negation of p^^q is the disjunction of . . . . . . . . . . . . .

The converse of p rArr (q rArr r) is

The contrapositive of (~p ^^ q) rarr (q ^^ ~r) is

Negation of disjunction of p and q is equivalent to the negation of both p and q . Verify

Find the negation of p∨(-p ∧ q)

The negation of the propostion q vv ~ ( p ^^ r) is