Home
Class 12
MATHS
If 1 + sintheta + sin^2theta + sin^3thet...

If `1 + sintheta + sin^2theta + sin^3theta +.. oo = 4 + 2sqrt3, 0 lt theta lt pi, theta != pi/2` then

A

`theta = pi/3`

B

`theta = pi/6`

C

`theta = pi/3 or pi/6`

D

`theta = pi/3 or (2pi)/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( \theta \) such that \[ 1 + \sin \theta + \sin^2 \theta + \sin^3 \theta + \ldots = 4 + 2\sqrt{3} \] ### Step 1: Identify the series as a geometric series The left-hand side of the equation is an infinite geometric series where: - The first term \( a = 1 \) - The common ratio \( r = \sin \theta \) The sum \( S \) of an infinite geometric series can be calculated using the formula: \[ S = \frac{a}{1 - r} \] ### Step 2: Apply the formula for the sum of the series Substituting the values of \( a \) and \( r \): \[ S = \frac{1}{1 - \sin \theta} \] ### Step 3: Set the sum equal to the given value Now, we set the sum equal to \( 4 + 2\sqrt{3} \): \[ \frac{1}{1 - \sin \theta} = 4 + 2\sqrt{3} \] ### Step 4: Cross-multiply to eliminate the fraction Cross-multiplying gives: \[ 1 = (4 + 2\sqrt{3})(1 - \sin \theta) \] ### Step 5: Expand the right-hand side Expanding the right-hand side: \[ 1 = (4 + 2\sqrt{3}) - (4 + 2\sqrt{3})\sin \theta \] ### Step 6: Rearrange the equation Rearranging the equation gives: \[ (4 + 2\sqrt{3})\sin \theta = (4 + 2\sqrt{3}) - 1 \] This simplifies to: \[ (4 + 2\sqrt{3})\sin \theta = 3 + 2\sqrt{3} \] ### Step 7: Solve for \( \sin \theta \) Dividing both sides by \( 4 + 2\sqrt{3} \): \[ \sin \theta = \frac{3 + 2\sqrt{3}}{4 + 2\sqrt{3}} \] ### Step 8: Rationalize the denominator To simplify \( \sin \theta \), we can multiply the numerator and denominator by the conjugate of the denominator: \[ \sin \theta = \frac{(3 + 2\sqrt{3})(4 - 2\sqrt{3})}{(4 + 2\sqrt{3})(4 - 2\sqrt{3})} \] Calculating the denominator: \[ (4 + 2\sqrt{3})(4 - 2\sqrt{3}) = 16 - 12 = 4 \] Calculating the numerator: \[ (3 + 2\sqrt{3})(4 - 2\sqrt{3}) = 12 - 6\sqrt{3} + 8\sqrt{3} - 12 = 2\sqrt{3} \] Thus, we have: \[ \sin \theta = \frac{2\sqrt{3}}{4} = \frac{\sqrt{3}}{2} \] ### Step 9: Find the values of \( \theta \) The values of \( \theta \) for which \( \sin \theta = \frac{\sqrt{3}}{2} \) are: \[ \theta = \frac{\pi}{3} \quad \text{and} \quad \theta = \frac{2\pi}{3} \] ### Conclusion Thus, the required values of \( \theta \) are: \[ \theta = \frac{\pi}{3} \quad \text{or} \quad \theta = \frac{2\pi}{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 1+sintheta+sin^2theta+sin^3theta+..to oo=4+2sqrt3 0< theta < pi , theta!=pi/2 then

cos theta + sin theta - sin 2 theta = (1)/(2), 0 lt theta lt (pi)/(2)

If cos theta - sin theta = (1)/(5) , where 0 lt theta lt (pi)/(4) , then

Find the sum sintheta+x sin 2theta+x^2sin 3theta+… to oo

Solve: sin 7 theta + sin 4 theta + sin theta = 0, 0 lt theta lt ( pi)/(2)

If theta in (0, 2pi) and 2sin^2theta - 5sintheta + 2 > 0 , then the range of theta is

A ={ theta : 2cos^2 theta + sintheta <=2} , and B = {theta: pi/2<=theta<= (3pi)/2} then (A∩B) is

Statement I If 2 cos theta + sin theta=1(theta != (pi)/(2)) then the value of 7 cos theta + 6 sin theta is 2. Statement II If cos 2theta-sin theta=1/2, 0 lt theta lt pi/2 , then sin theta+cos 6 theta = 0 .

cot^(2) theta - (1 + sqrt3) cot theta + sqrt3 = 0,0 lt theta lt (pi)/(2)

To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of (tan^(2)""(pi)/(7) + tan^(2)""(2pi)/(7) + tan^(2)""(3pi)/(7))/(cot^(2)""(pi)/(7) + cot^(2)""(2pi)/(7) + cot^(2)""(3pi)/(7)) is