Home
Class 12
MATHS
Evaluate lim(x rarr 2) (3^(x)+3^(3 - x)-...

Evaluate `lim_(x rarr 2) (3^(x)+3^(3 - x)-12)/(3^((-x)/(2))-3^(1-x))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 2} \frac{3^x + 3^{3 - x} - 12}{3^{-\frac{x}{2}} - 3^{1 - x}}, \] we will follow these steps: ### Step 1: Substitute the limit value First, we substitute \( x = 2 \) into the expression to check if we get an indeterminate form: \[ 3^2 + 3^{3 - 2} - 12 = 9 + 3 - 12 = 0, \] and \[ 3^{-\frac{2}{2}} - 3^{1 - 2} = 3^{-1} - 3^{-1} = \frac{1}{3} - \frac{1}{3} = 0. \] Since both the numerator and denominator approach 0, we have an indeterminate form \( \frac{0}{0} \). **Hint:** Check if substituting the limit value results in an indeterminate form. ### Step 2: Apply L'Hôpital's Rule Since we have \( \frac{0}{0} \), we can apply L'Hôpital's Rule, which states that we can take the derivative of the numerator and the derivative of the denominator. **Numerator:** \[ \frac{d}{dx}(3^x + 3^{3 - x} - 12) = 3^x \ln(3) - 3^{3 - x} \ln(3). \] **Denominator:** \[ \frac{d}{dx}(3^{-\frac{x}{2}} - 3^{1 - x}) = -\frac{1}{2} 3^{-\frac{x}{2}} \ln(3) + 3^{1 - x} \ln(3). \] ### Step 3: Rewrite the limit using derivatives Now we can rewrite the limit as: \[ \lim_{x \to 2} \frac{3^x \ln(3) - 3^{3 - x} \ln(3)}{-\frac{1}{2} 3^{-\frac{x}{2}} \ln(3) + 3^{1 - x} \ln(3)}. \] ### Step 4: Factor out \( \ln(3) \) Factoring out \( \ln(3) \) from both the numerator and denominator gives: \[ \lim_{x \to 2} \frac{\ln(3) (3^x - 3^{3 - x})}{\ln(3) \left(-\frac{1}{2} 3^{-\frac{x}{2}} + 3^{1 - x}\right)}. \] This simplifies to: \[ \lim_{x \to 2} \frac{3^x - 3^{3 - x}}{-\frac{1}{2} 3^{-\frac{x}{2}} + 3^{1 - x}}. \] ### Step 5: Substitute \( x = 2 \) again Now substituting \( x = 2 \): Numerator: \[ 3^2 - 3^{3 - 2} = 9 - 3 = 6. \] Denominator: \[ -\frac{1}{2} 3^{-1} + 3^{1 - 2} = -\frac{1}{2} \cdot \frac{1}{3} + \frac{1}{3} = -\frac{1}{6} + \frac{1}{3} = -\frac{1}{6} + \frac{2}{6} = \frac{1}{6}. \] ### Step 6: Final calculation Now, we can compute the limit: \[ \lim_{x \to 2} \frac{6}{\frac{1}{6}} = 6 \cdot 6 = 36. \] Thus, the final answer is \[ \boxed{36}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate lim_(x to 2) (sqrt(3 - x) - 1)/(2 - x)

Evaluate: lim_(xrarr0) ((3+x)^(1//2)-(3-x)^(1//2))/(x)

Evaluate, lim_(x to 2) (x^(3) - 8)/(x^(2) - 4)

Evaluate lim_(x to 2) [4x^(2) + 3x + 9]

lim_(x rarr 2) (x^6-24 x-16)/(x^3+2x-12)

Evaluate: lim_(xrarr1) [(x-2)/(x^(2)-x)-(1)/(x^(3)-3x^(2)+2x)]

Evaluate: lim_(xrarr1) ((2x-3)(sqrt(x)-1))/(2x^(2)+x-3)

Evaluate: lim_(xrarroo) (5x^(2)+3x+1)/(3x^(2)+2x+4)

lim_(x rarr0)(2x^2-3x)/x

lim _ ( x to 2 ) ( 3 ^(x) + 3 ^( 3 - x ) - 12 ) /( 3 ^( - x//2) - 3 ^( 1 -x)) is equal to __________