Home
Class 12
CHEMISTRY
A solution is prepared by mixing 8.5g of...

A solution is prepared by mixing 8.5g of `CH_(2)Cl_(2)` and 11.95g of `CHCl_(3)`. If vapour pressure of `CH_(2)Cl_(2)` and `CHCl_(3)` at 298 K are 415 and 200 mm Hg respectively, the mole fraction of `CHCl_(3)` in vapour form is :
`("Molar mass of Cl"="35.5 g mol"^(-1))`

A

0.162

B

0.675

C

0.325

D

0.486

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the mole fraction of CHCl₃ in the vapor form, we will follow these steps: ### Step 1: Calculate the molar mass of CH₂Cl₂ and CHCl₃ - **Molar mass of CH₂Cl₂**: - Carbon (C): 12 g/mol - Hydrogen (H): 1 g/mol × 2 = 2 g/mol - Chlorine (Cl): 35.5 g/mol × 2 = 71 g/mol - Total = 12 + 2 + 71 = 85 g/mol - **Molar mass of CHCl₃**: - Carbon (C): 12 g/mol - Hydrogen (H): 1 g/mol - Chlorine (Cl): 35.5 g/mol × 3 = 106.5 g/mol - Total = 12 + 1 + 106.5 = 119.5 g/mol ### Step 2: Calculate the number of moles of CH₂Cl₂ and CHCl₃ - **Moles of CH₂Cl₂**: \[ n_{CH_2Cl_2} = \frac{8.5 \text{ g}}{85 \text{ g/mol}} = 0.1 \text{ moles} \] - **Moles of CHCl₃**: \[ n_{CHCl_3} = \frac{11.95 \text{ g}}{119.5 \text{ g/mol}} = 0.1 \text{ moles} \] ### Step 3: Calculate the mole fractions of CH₂Cl₂ and CHCl₃ - **Total moles**: \[ n_{total} = n_{CH_2Cl_2} + n_{CHCl_3} = 0.1 + 0.1 = 0.2 \text{ moles} \] - **Mole fraction of CHCl₃**: \[ X_{CHCl_3} = \frac{n_{CHCl_3}}{n_{total}} = \frac{0.1}{0.2} = 0.5 \] ### Step 4: Calculate the total vapor pressure of the solution - **Using Raoult's Law**: \[ P_{total} = X_{CHCl_3} \cdot P^0_{CHCl_3} + X_{CH_2Cl_2} \cdot P^0_{CH_2Cl_2} \] - Where: - \( P^0_{CHCl_3} = 200 \text{ mm Hg} \) - \( P^0_{CH_2Cl_2} = 415 \text{ mm Hg} \) - \( X_{CH_2Cl_2} = 1 - X_{CHCl_3} = 0.5 \) - **Calculating total pressure**: \[ P_{total} = (0.5 \cdot 200) + (0.5 \cdot 415) = 100 + 207.5 = 307.5 \text{ mm Hg} \] ### Step 5: Calculate the mole fraction of CHCl₃ in the vapor phase - **Using partial pressures**: \[ Y_{CHCl_3} = \frac{P_{CHCl_3}}{P_{total}} = \frac{X_{CHCl_3} \cdot P^0_{CHCl_3}}{P_{total}} \] - Where: - \( P_{CHCl_3} = X_{CHCl_3} \cdot P^0_{CHCl_3} = 0.5 \cdot 200 = 100 \text{ mm Hg} \) - **Calculating mole fraction in vapor**: \[ Y_{CHCl_3} = \frac{100}{307.5} \approx 0.325 \] ### Final Answer: The mole fraction of CHCl₃ in the vapor form is approximately **0.325**. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

A solution is prepared by adding 64 g of CH_(3)OH to 180 g of water. Calculate the mole fraction of CH_(3)OH . (Molar mass of CH_(3)OH = 32 g ) .

The vapour pressure of pure CHCl_(3) and CH_(2)Cl_(2) are 200 ad 41.5 atm respectively. The weight of CHCl_(3) and CH_(2)Cl_(2) are respectively 11.9 g and 17 gm. The vapour pressure of solution will be

The dipole moments of CH_(3)Cl , CH_(2)Cl_(2), CHCl_(3) are in the order

Vapour pressure of pure CS _ 2 and CH _ 3 COCH _ 3 are 512 mm of Hg and 312 mm of Hg respectively. Total vapour pressure of mixture is 600 mm of Hg then find incorrect statement :

In reaction: CH_(3)COCH_(3)(g)hArrCH_(3)CH_(3)(g)+CO(g), if the initial pressure of CH_(3)COCH_(3)(g) is 150 mm and at equilibrium the mole fraction of CO(g) is 1/3 , then the value K_(P) is

In reaction: CH_(3)COCH_(3)(g)hArrCH_(3)CH_(3)(g)+CO(g), if the initial pressure of CH_(3)COCH_(3)(g) is 150 mm and at equilibrium the mole fraction of CO(g) is 1/3 , then the value K_(P) is

The oxidation number, of C in CH_(4). CH_(3)CI, CH_(2)CI_(2), CHCl_(3) and C Cl_(4) are respectively:

Benzene and naphthalene form ideal solution over the entire range of composition. The vapour pressure of pure benzene and naphthalene at 300 K are 50.71 mm Hg and 32.06 mm Hg respectively. Calculate the mole fraction of benzene in vapour phase if 80 g of benzene is mixed with 100 g of naphthalene.

At room temperature, a dilute solution of urea is prepared by dissolving 0.60 g of urea in 360 g of water. If the vapour pressure of pure water at this temperature is 35 mm Hg, lowering of vapour pressure will be: (molar mass of urea =60 g "mol"^(-1) )

CH_(3)COCH_(3(g))hArrC_(2)H_(6) (g)+CO_((g)) , The initial pressure of CH_(3)COCH_(3) is 50 mm . At equilibrium the mole fraction of C_(2)H_(6) is 1/5 then K_(p) will be :-