Home
Class 12
BIOLOGY
The novelty and brilliant insight of Dra...

The novelty and brilliant insight of Drawin was that he asserted that variations, which are _______W________ and which resource utillisation better for few will enable only those to reproduce and leave _________X_______. Hence over a period of time there would be _______Y______ in population characteristic and hence _______Z______appear.
In the above paragraph, W, X, Y and Z respectively are:

A

Option1 Heritable, less progency, a change, no new forms

B

Option2 Non-heritable, more progeny, a change, new forms

C

Option3 Heritable, more progency, a change, new forms

D

Option4 Heritable, less progency, no change, no new forms

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Huygen was the figure scientist who proposed the idea of wave theory of light he said that the light propagates in form of wavelengths. A wavefront is a imaginary surface of every point of which waves are in the same. phase. For example the wavefront for a point source of light is collection of concentric spheres which have centre at the origin w_(1) is a wavefront w_(2) is another wavefront. The radius of the wavefront at time 't' is 'ct' in thic case where 'c' is the speed of light the direction of propagation of light is perpendicular to the surface of the wavelength. the wavefronts are plane wavefronts in case of a parallel beam of light. Huygen also said that every point of the wavefront acts as the source of secondary wavelets. The tangent drawn to all secondary wavelets at a time is the new wavefront at that time. The wavelets are to be considered only in the forward direction (i.e., the direction of propagation of light) and not in the reverse direction if a wavefront w_(1) and draw spheres of radius 'cDeltat' they are called secondary wavelets. Draw a surface w_(2) which is tangential to all these secondary wavelets w_(2) is the wavefront at time t+Deltat Huygen proved the laws of reflection and laws of refraction using concept of wavefront. Q. The wavefrot of a light beam is given by the equation x+2y+3z=c (where c is arbitrary constant) then the angle made by the direction of light with the y-axis is

A point charges Q is moving in a circular orbit of radius R in the x-y plane with an angular velocity omega . This can be considered as equivalent to a loop carrying a steady current (Q omega)/(2 pi) . S uniform magnetic field along the positive z-axis is now switched on, which increases at a constant rate from 0 to B in one second. Assume that the radius of hte orbit remains constant. The application of hte magnetic field induces an emf in the orbit. The induced emf is defined as the work done by an induced electric field in moving a unit positive charge around a closed loop. It si known that, for an orbiting charge, the magnetic dipole moment is proportional to the angular momentum with a porportionality constant lambda . The magnitude of the induced electric field in the orbit at any instant of time during the time interval of the mangnetic field change is

A point charges Q is moving in a circular orbit of radius R in the x-y plane with an angular velocity omega . This can be considered as equivalent to a loop carrying a steady current (Q omega)/(2 pi) . S uniform magnetic field along the positive z-axis is now switched on, which increases at a constant rate from 0 to B in one second. Assume that the radius of hte orbit remains constant. The application of hte magnetic field induces an emf in the orbit. The induced emf is defined as the work done by an induced electric field in moving a unit positive charge around a closed loop. It si known that, for an orbiting charge, the magnetic dipole moment is proportional to the angular momentum with a porportionality constant lambda . The magnitude of the induced electric field in the orbit at any instant of time during the time interval of the mangnetic field change is

A point charges Q is moving in a circular orbit of radius R in the x-y plane with an angular velocity omega . This can be considered as equivalent to a loop carrying a steady current (Q omega)/(2 pi) . S uniform magnetic field along the positive z-axis is now switched on, which increases at a constant rate from 0 to B in one second. Assume that the radius of hte orbit remains constant. The application of hte magnetic field induces an emf in the orbit. The induced emf is defined as the work done by an induced electric field in moving a unit positive charge around a closed loop. It si known that, for an orbiting charge, the magnetic dipole moment is proportional to the angular momentum with a porportionality constant lambda . The charge in the magnetic dipole moment associated with the orbit. at the end of the time interval of hte magnetic field charge, is

A point charges Q is moving in a circular orbit of radius R in the x-y plane with an angular velocity omega . This can be considered as equivalent to a loop carrying a steady current (Q omega)/(2 pi) . S uniform magnetic field along the positive z-axis is now switched on, which increases at a constant rate from 0 to B in one second. Assume that the radius of the orbit remains constant. The application of the magnetic field induces an EMF in the orbit. The induced EMF is defined as the work done by an induced electric field in moving a unit positive charge around a closed loop. It is known that, for an orbiting charge, the magnetic dipole moment is proportional to the angular momentum with a proportionality constant lambda . The charge in the magnetic dipole moment associated with the orbit, at the end of the time interval of the magnetic field charge, is