If `|(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))| =5`, then the value of
`Delta = |(b_(2) c_(3) - b_(3) c_(2),a_(3) c_(2) - a_(2) c_(3),a_(2) b_(3) -a_(3) b_(2)),(b_(3) c_(1) - b_(1) c_(3),a_(1) c_(3) - a_(3) c_(1),a_(3) b_(1) - a_(1) b_(3)),(b_(1) c_(2) - b_(2) c_(1),a_(2) c_(1) - a_(1) c_(2),a_(1) b_(2) - a_(2) b_(1))|` is
If `|(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))| =5`, then the value of
`Delta = |(b_(2) c_(3) - b_(3) c_(2),a_(3) c_(2) - a_(2) c_(3),a_(2) b_(3) -a_(3) b_(2)),(b_(3) c_(1) - b_(1) c_(3),a_(1) c_(3) - a_(3) c_(1),a_(3) b_(1) - a_(1) b_(3)),(b_(1) c_(2) - b_(2) c_(1),a_(2) c_(1) - a_(1) c_(2),a_(1) b_(2) - a_(2) b_(1))|` is
`Delta = |(b_(2) c_(3) - b_(3) c_(2),a_(3) c_(2) - a_(2) c_(3),a_(2) b_(3) -a_(3) b_(2)),(b_(3) c_(1) - b_(1) c_(3),a_(1) c_(3) - a_(3) c_(1),a_(3) b_(1) - a_(1) b_(3)),(b_(1) c_(2) - b_(2) c_(1),a_(2) c_(1) - a_(1) c_(2),a_(1) b_(2) - a_(2) b_(1))|` is
A
5
B
25
C
125
D
0
Text Solution
AI Generated Solution
The correct Answer is:
To solve the problem, we need to evaluate the determinant \( \Delta \) given that the determinant of the matrix formed by the vectors \((a_1, b_1, c_1)\), \((a_2, b_2, c_2)\), and \((a_3, b_3, c_3)\) is equal to 5.
We denote this determinant as \( |(a_1, b_1, c_1), (a_2, b_2, c_2), (a_3, b_3, c_3)| = 5 \).
### Step 1: Understand the given determinant
We have:
\[
|(a_1, b_1, c_1), (a_2, b_2, c_2), (a_3, b_3, c_3)| = 5
\]
This means that the volume of the parallelepiped formed by these vectors is 5.
### Step 2: Write down the expression for \( \Delta \)
The expression for \( \Delta \) is given as:
\[
\Delta = |(b_2 c_3 - b_3 c_2, a_3 c_2 - a_2 c_3, a_2 b_3 - a_3 b_2), (b_3 c_1 - b_1 c_3, a_1 c_3 - a_3 c_1, a_3 b_1 - a_1 b_3), (b_1 c_2 - b_2 c_1, a_2 c_1 - a_1 c_2, a_1 b_2 - a_2 b_1)|
\]
### Step 3: Recognize the structure of the determinant
The determinant \( \Delta \) can be interpreted as a determinant of a matrix formed by the cross products of the original vectors. The terms in the determinant represent the components of the cross products of the vectors.
### Step 4: Calculate \( \Delta \)
Using the properties of determinants, particularly that the determinant of a matrix formed by cross products of vectors is related to the original determinant, we can express \( \Delta \) in terms of the original determinant.
The determinant of the matrix formed by the cross products of the vectors is given by:
\[
\Delta = |(b_2 c_3 - b_3 c_2, a_3 c_2 - a_2 c_3, a_2 b_3 - a_3 b_2), (b_3 c_1 - b_1 c_3, a_1 c_3 - a_3 c_1, a_3 b_1 - a_1 b_3), (b_1 c_2 - b_2 c_1, a_2 c_1 - a_1 c_2, a_1 b_2 - a_2 b_1)|
\]
is equal to \( |A|^2 \), where \( |A| \) is the original determinant.
### Step 5: Substitute the known value
Since we know that \( |A| = 5 \):
\[
\Delta = |A|^2 = 5^2 = 25
\]
### Final Answer
Thus, the value of \( \Delta \) is:
\[
\Delta = 25
\]
Similar Questions
Explore conceptually related problems
The value of |(a_(1) x_(1) + b_(1) y_(1),a_(1) x_(2) + b_(1) y_(2),a_(1) x_(3) + b_(1) y_(3)),(a_(2) x_(1) +b_(2) y_(1),a_(2) x_(2) + b_(2) y_(2),a_(2) x_(3) + b_(2) y_(3)),(a_(3) x_(1) + b_(3) y_(1),a_(3) x_(2) + b_(3) y_(2),a_(3) x_(3) + b_(3) y_(3))| , is
The value of the determinant Delta = |(1 + a_(1) b_(1),1 + a_(1) b_(2),1 + a_(1) b_(3)),(1 + a_(2) b_(1),1 + a_(2) b_(2),1 + a_(2) b_(3)),(1 + a_(3) b_(1) ,1 + a_(3) b_(2),1 + a_(3) b_(3))| , is
suppose D= |{:(a_(1),,b_(1),,c_(1)),(a_(2),,b_(2),,c_(2)),(a_(3),,b_(3),,c_(3)):}| and Dprime= |{:(a_(1)+pb_(1),,b_(1)+qc_(1),,c_(1)+ra_(1)),(a_(2)+pb_(2),,b_(2)+qc_(2),,c_(2)+ra_(2)),(a_(3)+pb_(3),,b_(3)+qc_(3),,c_(3)+ra_(3)):}| . Then
The determinant |(b_(1)+c_(1),c_(1)+a_(1),a_(1)+b_(1)),(b_(2)+c_(2),c_(2)+a_(2),a_(2)+b_(2)),(b_(3)+c_(3),c_(3)+a_(3),a_(3)+b_(3))|
In algebra, the determinant is useful value that can be computer from the elements of a square matrix. The determinant is represented as det 'A' or |A| and its value can be evaluated by the expansion of the determinant as given below (A) Expansion of two order determinant : (B) Expansion of 3^(rd) order determinant (i) With respect to first fow : |A|=|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=a_(1)|{:(b_(2),c_(2)),(b_(3),c_(3)):}|-b_(1)|{:(a_(2),c_(2)),(a_(3),c_(3)):}|+c_(1)|{:(a_(2),b_(2)),(a_(3),b_(3)):}| =a_(1)(b_(2)c_(3)-b_(3)c_(2))-b_(1)(a_(2)c_(3)-a_(3)c_(2))+c_(1)(a_(2)b_(3)-b_(2)a_(3)) (ii) With respect to second column : |A|=|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=-b_(1)|{:(a_(2),c_(1)),(a_(3),c_(3)):}|+b_(2)|{:(a_(1),c_(1)),(a_(3),c_(3)):}|-b_(3)|{:(a_(1),c_(1)),(a_(2),c_(2)):}| Similarly a determinant can be expanded with respect to any row or column The value of k for which determinant |{:(2,3,-1),(-1,-2,k),(1,-4,1):}| vanishes, is "(a) -3 (b) 7/11 (c) -2 (d) 2"
In algebra, the determinant is useful value that can be computer from the elements of a square matrix. The determinant is represented as det 'A' or |A| and its value can be evaluated by the expansion of the determinant as given below (A) Expansion of two order determinant : (B) Expansion of 3^(rd) order determinant (i) With respect to first fow : |A|=|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=a_(1)|{:(b_(2),c_(2)),(b_(3),c_(3)):}|-b_(1)|{:(a_(2),c_(2)),(a_(3),c_(3)):}|+c_(1)|{:(a_(2),b_(2)),(a_(3),b_(3)):}| =a_(1)(b_(2)c_(3)-b_(3)c_(2))-b_(1)(a_(2)c_(3)-a_(3)c_(2))+c_(1)(a_(2)b_(3)-b_(2)a_(3)) (ii) With respect to second column : |A|=|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=-b_(1)|{:(a_(2),c_(1)),(a_(3),c_(3)):}|+b_(2)|{:(a_(1),c_(1)),(a_(3),c_(3)):}|-b_(3)|{:(a_(1),c_(1)),(a_(2),c_(2)):}| Similarly a determinant can be expanded with respect to any row or column The value of the determinant |{:(2,3,4),(6,5,7),(1,-3,2):}|is: "(a) 54 (b) 40 (c) -45 (d) -40"
In algebra, the determinant is useful value that can be computer from the elements of a square matrix. The determinant is represented as det 'A' or |A| and its value can be evaluated by the expansion of the determinant as given below (A) Expansion of two order determinant : (B) Expansion of 3^(rd) order determinant (i) With respect to first fow : |A|=|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=a_(1)|{:(b_(2),c_(2)),(b_(3),c_(3)):}|-b_(1)|{:(a_(2),c_(2)),(a_(3),c_(3)):}|+c_(1)|{:(a_(2),b_(2)),(a_(3),b_(3)):}| =a_(1)(b_(2)c_(3)-b_(3)c_(2))-b_(1)(a_(2)c_(3)-a_(3)c_(2))+c_(1)(a_(2)b_(3)-b_(2)a_(3)) (ii) With respect to second column : |A|=|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=-b_(1)|{:(a_(2),c_(1)),(a_(3),c_(3)):}|+b_(2)|{:(a_(1),c_(1)),(a_(3),c_(3)):}|-b_(3)|{:(a_(1),c_(1)),(a_(2),c_(2)):}| Similarly a determinant can be expanded with respect to any row or column. The vaue of the determinant |{:(5,1),(3,2):}|is: "(a) 4 (b) 5 (c) 6 (d) 7 "
if a_(1)b_(1)c_(1), a_(2)b_(2)c_(2)" and " a_(3)b_(3)c_(3) are three-digit even natural numbers and Delta = |{:(c_(1),,a_(1),,b_(1)),(c_(2),,a_(2),,b_(2)),(c_(3),,a_(3),,b_(3)):}|" then " Delta is
The value of the determinant Delta = |((1 - a_(1)^(3) b_(1)^(3))/(1 - a_(1) b_(1)),(1 - a_(1)^(3) b_(2)^(3))/(1 - a_(1) b_(2)),(1 - a_(1)^(3) b_(3)^(3))/(1 - a_(1) b_(3))),((1 - a_(2)^(3) b_(1)^(3))/(1 - a_(2) b_(1)),(1 - a_(2)^(3) b_(2)^(3))/(1 - a_(2) b_(2)),(1 - a_(2)^(3) b_(3)^(3))/(1 - a_(2) b_(3))),((1 - a_(3)^(3) b_(1)^(3))/(1 - a_(3) b_(1)),(1 - a_(3)^(3) b_(2)^(3))/(1 - a_(3) b_(2)),(1 - a_(3)^(3) b_(3)^(3))/(1 - a_(3) b_(3)))| , is
Show that if x_(1),x_(2),x_(3) ne 0 |{:(x_(1) +a_(1)b_(1),,a_(1)b_(2),,a_(1)b_(3)),(a_(2)b_(1),,x_(2)+a_(2)b_(2),,a_(2)b_(3)),(a_(3)b_(1),,a_(3)b_(2),,x_(3)+a_(3)b_(3)):}| =x_(1)x_(2)x_(3) (1+(a_(1)b_(1))/(x_(1))+(a_(2)b_(2))/(x_(2))+(a_(3)b_(3))/(x_(3)))
Recommended Questions
- If |(a(1),b(1),c(1)),(a(2),b(2),c(2)),(a(3),b(3),c(3))| =5, then the v...
Text Solution
|
- if Delta=det[[a(1),b(1),c(1)a(2),b(2),c(2)a(3),b(3),c(3)]]
Text Solution
|
- If |(a(1),b(1),c(1)),(a(2),b(2),c(2)),(a(3),b(3),c(3))| =5, then the v...
Text Solution
|
- If |(a(1),b(1),c(1)),(a(2),b(2),c(2)),(a(3),b(3),c(3))|!= 0|(a(1)+b(1)...
Text Solution
|
- If |(a(1),b(1),c(1)),(a(2),b(2),c(2)),(a(3),b(3),c(3))|=Delta, then |(...
Text Solution
|
- Show that |[a(1),b(1),-c(1)],[-a(2),-b(2),c(2)],[a(3),b(3),-c(3)]|=|[a...
Text Solution
|
- The determinant |(b(1)+c(1),c(1)+a(1),a(1)+b(1)),(b(2)+c(2),c(2)+a(2...
Text Solution
|
- यदि सारणिक Delta = |(a(1),b(1),c(1)),(a(2),b(2),c(2)),(a(3),b(3),c(3))...
Text Solution
|
- यदि Delta=|{:(a(1),b(1),c(1)),(a(2),b(2),c(2)),(a(3),b(3),c(3)):}| और ...
Text Solution
|