Home
Class 12
MATHS
If vec( a) , vec( b) , vec( c ) are non...

If `vec( a) , vec( b) , vec( c ) ` are non coplanar non-zero vectors such that `vec( b) xxvec( c) = vec( a ), vec( a ) xx vec( b) =vec( c ) ` and `vec( c ) xx vec( a ) = vec ( b ) ` , then which of the following is not true

A

`| vec( a) | =1`

B

`[ vec( a ) vec( b ) vec( c ) ] =1`

C

`| vec( a) | + |vec( b)| +| vec( c ) | =3`

D

`| vec( a) | cancel(=) |vec( b)| cancel(=)| vec( c ) | `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given vector equations and derive the necessary conclusions step by step. ### Step 1: Understand the given conditions We have three non-coplanar non-zero vectors \( \vec{a}, \vec{b}, \vec{c} \) such that: 1. \( \vec{b} \times \vec{c} = \vec{a} \) 2. \( \vec{a} \times \vec{b} = \vec{c} \) 3. \( \vec{c} \times \vec{a} = \vec{b} \) ### Step 2: Calculate the scalar triple product The scalar triple product \( \text{box}(\vec{a}, \vec{b}, \vec{c}) \) is defined as: \[ \text{box}(\vec{a}, \vec{b}, \vec{c}) = \vec{a} \cdot (\vec{b} \times \vec{c}) \] From the first condition, we know that \( \vec{b} \times \vec{c} = \vec{a} \). Thus: \[ \text{box}(\vec{a}, \vec{b}, \vec{c}) = \vec{a} \cdot \vec{a} = |\vec{a}|^2 \] ### Step 3: Calculate other scalar triple products Using the other conditions: - For \( \text{box}(\vec{b}, \vec{c}, \vec{a}) \): \[ \text{box}(\vec{b}, \vec{c}, \vec{a}) = \vec{b} \cdot (\vec{c} \times \vec{a}) = \vec{b} \cdot \vec{b} = |\vec{b}|^2 \] - For \( \text{box}(\vec{c}, \vec{a}, \vec{b}) \): \[ \text{box}(\vec{c}, \vec{a}, \vec{b}) = \vec{c} \cdot (\vec{a} \times \vec{b}) = \vec{c} \cdot \vec{c} = |\vec{c}|^2 \] ### Step 4: Establish equality of the scalar triple products From the properties of scalar triple products, we have: \[ \text{box}(\vec{a}, \vec{b}, \vec{c}) = \text{box}(\vec{b}, \vec{c}, \vec{a}) = \text{box}(\vec{c}, \vec{a}, \vec{b}) \] This implies: \[ |\vec{a}|^2 = |\vec{b}|^2 = |\vec{c}|^2 \] ### Step 5: Set a common magnitude Let \( |\vec{a}| = |\vec{b}| = |\vec{c}| = k \). Then: \[ |\vec{a}|^2 = k^2 \] ### Step 6: Use the identity for the scalar triple product There is an important identity: \[ \text{box}(\vec{b} \times \vec{c}, \vec{c} \times \vec{a}, \vec{a} \times \vec{b}) = \text{box}(\vec{a}, \vec{b}, \vec{c})^2 \] Substituting the conditions: \[ \text{box}(\vec{a}, \vec{b}, \vec{c}) = \text{box}(\vec{a}, \vec{b}, \vec{c})^2 \] Let \( x = \text{box}(\vec{a}, \vec{b}, \vec{c}) \), then: \[ x = x^2 \] This gives us: \[ x(x - 1) = 0 \] Thus, \( x = 0 \) or \( x = 1 \). ### Step 7: Analyze the implications Since \( \vec{a}, \vec{b}, \vec{c} \) are non-coplanar, \( x \) cannot be 0. Therefore, we conclude: \[ \text{box}(\vec{a}, \vec{b}, \vec{c}) = 1 \] ### Step 8: Conclusion about magnitudes Since \( |\vec{a}|^2 = |\vec{b}|^2 = |\vec{c}|^2 = 1 \), we have: \[ |\vec{a}| = |\vec{b}| = |\vec{c}| = 1 \] ### Step 9: Check the options Now we need to check which of the statements is not true based on our findings. The options generally relate to the magnitudes and relationships of the vectors.
Promotional Banner

Similar Questions

Explore conceptually related problems

If vec(a) , vec( b) and vec( c ) are unit vectors such that vec(a) + vec(b) + vec( c) = 0 , then the values of vec(a). vec(b)+ vec(b) . vec( c )+ vec( c) .vec(a) is

If vec a , vec b , vec c are three non-coplanar vectors, prove that [ vec a+ vec b+ vec c vec a+ vec b vec a+ vec c]=-[ vec a vec b vec c]

If vec a , vec b ,a n d vec c are three non-coplanar non-zero vecrtors, then prove that ( vec a . vec a) vec bxx vec c+( vec a . vec b) vec cxx vec a+( vec a . vec c) vec axx vec b=[ vec b vec c vec a] vec a

If vec a , vec b , vec c are three non coplanar vectors such that vec adot vec a= vec d vec b= vec ddot vec c=0 , then show that vec d is the null vector.

veca , vec b , vec c are non-coplanar vectors and x vec a + y vec b + z vec c = vec 0 then

If vec a, vec b , vec c are three non- coplanar vectors such that vec a + vec b + vec c = alpha vec d and vec b +vec c + vec d = beta vec a, " then " vec a + vec b + vec c + vec d to equal to

Show that vec(a), vec(b), vec(c ) are coplanar if and only if vec(a) + vec(b), vec(b) + vec(c ), vec( c) + vec(a) are coplanar

Given vec(A)xxvec(B)=vec(0) and vec(B)xxvec(C )=vec(0) Prove that vec(A)xxvec(C )=vec(0)

If vec a ,\ vec b ,\ vec c are three non coplanar vectors such that vec d dot vec a= vec d dot vec b= vec d dot vec c=0, then show that d is the null vector.

Prove that vec(a)[(vec(b) + vec(c)) xx (vec(a) + 3vec(b) + 4vec(c))] = [ vec(a) vec(b) vec(c)]