Home
Class 12
MATHS
If 2y=(cot^(-1)((sqrt3 cos x + sin x)/(c...

If `2y=(cot^(-1)((sqrt3 cos x + sin x)/(cos x - sqrt3 sin x)))^(2) , x in (0, pi/2) " then " (dy)/(dx) ` is equal to

A

`( pi)/( 6) -x `

B

`2x - ( pi)/( 3)`

C

` x - ( pi)/( 6)`

D

`(pi)/( 3) - x `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \(\frac{dy}{dx}\) given the equation: \[ 2y = \left( \cot^{-1} \left( \frac{\sqrt{3} \cos x + \sin x}{\cos x - \sqrt{3} \sin x} \right) \right)^2 \] ### Step 1: Simplify the expression inside the cotangent inverse We start with the expression inside the cotangent inverse: \[ \frac{\sqrt{3} \cos x + \sin x}{\cos x - \sqrt{3} \sin x} \] To simplify this, we can divide the numerator and the denominator by \(\cos x\): \[ = \frac{\sqrt{3} + \tan x}{1 - \sqrt{3} \tan x} \] ### Step 2: Recognize the angle in terms of tangent The expression \(\frac{\sqrt{3} + \tan x}{1 - \sqrt{3} \tan x}\) can be recognized as the tangent of a sum of angles. Specifically: \[ \tan\left(\frac{\pi}{3} + x\right) = \frac{\tan\frac{\pi}{3} + \tan x}{1 - \tan\frac{\pi}{3} \tan x} = \frac{\sqrt{3} + \tan x}{1 - \sqrt{3} \tan x} \] Thus, we have: \[ \cot^{-1}\left(\frac{\sqrt{3} \cos x + \sin x}{\cos x - \sqrt{3} \sin x}\right) = \frac{\pi}{3} + x \] ### Step 3: Substitute back into the equation Now substituting back into our equation for \(2y\): \[ 2y = \left(\frac{\pi}{3} + x\right)^2 \] ### Step 4: Differentiate both sides with respect to \(x\) Now we differentiate both sides with respect to \(x\): \[ \frac{d}{dx}(2y) = \frac{d}{dx}\left(\left(\frac{\pi}{3} + x\right)^2\right) \] Using the chain rule on the left side: \[ 2 \frac{dy}{dx} = 2\left(\frac{\pi}{3} + x\right) \cdot \frac{d}{dx}\left(\frac{\pi}{3} + x\right) \] Since \(\frac{d}{dx}\left(\frac{\pi}{3} + x\right) = 1\): \[ 2 \frac{dy}{dx} = 2\left(\frac{\pi}{3} + x\right) \] ### Step 5: Solve for \(\frac{dy}{dx}\) Dividing both sides by 2 gives: \[ \frac{dy}{dx} = \frac{\pi}{3} + x \] ### Final Answer Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{\pi}{3} + x \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cot^(-1) ((sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))) = (x)/(2), x in (0, (pi)/(4))

If y = sqrt((cos x - sin x)(sec 2x + 1)(cos x + sin x)) , Then (dy)/(dx) at x = (5 pi)/(6) is :

If y = sqrt((cos x - sin x)(sec 2x + 1)(cos x + sin x)) , Then (dy)/(dx) at x = (5 pi)/(6) is :

Prove that : cos ((pi)/(3) + x) = ( cos x - sqrt3 sin x )/(2)

int(cos2x)/((e^(-x)+cosx)sqrt(1+sin2x))dx,x in(0,(pi)/(2)) is equal to

cos 2x- 3 cos x + 1=(1)/((cot 2 x - cot x)sin (x-pi)) holds , if

int ( sin^(6) x + cos ^(6) x + 3 sin ^(2) x cos ^(2) x ) dx is equal to

y=sqrt(sin +cos x+sqrt(sinx+ cos x +sqrt(sin x +cos x +....oo))) then find dy/dx

int_(0)^(pi//2) ( cos x - sin x )/( 2 + sin x cos x ) dx is equal to

If f(x) = |cos x| + |sin x| , then dy/dx at x = (2pi)/3 is equal to