Home
Class 12
MATHS
If the middle term in the binomial expan...

If the middle term in the binomial expansion of `((1)/(x) + x sin x )^(10) ` is `( 63)/( 8)` , then the value of `6sin^(2) x +sin x -2` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will follow the process of finding the middle term in the binomial expansion and then substituting the value of \( \sin x \) to find the desired expression. ### Step 1: Identify the Binomial Expansion We start with the expression: \[ \left( \frac{1}{x} + x \sin x \right)^{10} \] This is a binomial expression where \( a = \frac{1}{x} \) and \( b = x \sin x \). ### Step 2: Determine the Middle Term For a binomial expansion of the form \( (a + b)^n \), the middle term (when \( n \) is even) is given by: \[ T_{r+1} = \binom{n}{r} a^{n-r} b^r \] where \( r = \frac{n}{2} \). Here, \( n = 10 \), so the middle term is: \[ T_{6} = \binom{10}{5} \left( \frac{1}{x} \right)^{10-5} (x \sin x)^5 \] ### Step 3: Simplify the Middle Term Calculating \( T_6 \): \[ T_6 = \binom{10}{5} \left( \frac{1}{x} \right)^5 (x \sin x)^5 \] \[ = \binom{10}{5} \cdot \frac{1}{x^5} \cdot x^5 \cdot (\sin x)^5 \] \[ = \binom{10}{5} \cdot (\sin x)^5 \] ### Step 4: Calculate \( \binom{10}{5} \) The value of \( \binom{10}{5} \) is calculated as follows: \[ \binom{10}{5} = \frac{10!}{5! \cdot 5!} = \frac{10 \times 9 \times 8 \times 7 \times 6}{5 \times 4 \times 3 \times 2 \times 1} = 252 \] ### Step 5: Set Up the Equation We know from the problem statement that: \[ 252 \cdot (\sin x)^5 = \frac{63}{8} \] ### Step 6: Solve for \( \sin x \) Now we can solve for \( \sin x \): \[ (\sin x)^5 = \frac{63}{8 \cdot 252} \] Calculating \( 8 \cdot 252 = 2016 \): \[ (\sin x)^5 = \frac{63}{2016} \] Simplifying \( \frac{63}{2016} \): \[ = \frac{1}{32} \quad \text{(since } 2016 = 63 \times 32\text{)} \] Thus, we have: \[ \sin x = \left( \frac{1}{2} \right) = \frac{1}{2} \] ### Step 7: Substitute \( \sin x \) into the Expression We need to find the value of: \[ 6 \sin^2 x + \sin x - 2 \] Substituting \( \sin x = \frac{1}{2} \): \[ 6 \left( \frac{1}{2} \right)^2 + \frac{1}{2} - 2 \] Calculating \( \left( \frac{1}{2} \right)^2 = \frac{1}{4} \): \[ = 6 \cdot \frac{1}{4} + \frac{1}{2} - 2 \] \[ = \frac{6}{4} + \frac{2}{4} - \frac{8}{4} \] \[ = \frac{6 + 2 - 8}{4} = \frac{0}{4} = 0 \] ### Final Answer Thus, the value of \( 6 \sin^2 x + \sin x - 2 \) is: \[ \boxed{0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If the middle term in the binomial expansion of (1/x+xsinx)^(10) is equal to (63)/8, find the value of xdot

If the middle term in the binomial expansion of (1/x+xsinx)^(10) is equal to (63)/8, find the value of xdot

If the middle term in the binomial expansion of (1/x+xsinx)^(10) is equal to (63)/8, find the value of x.

If the middle term in the expansion of ((1)/(x)+x sinx)^(10) is equal to 7(7)/(8) , then the principal value of x is:

Find the middle term in the expansion of (2x^2-1/x)^7

Find the middle term in the expansion of (2x^2-1/x)^7

Find the middle term in the expansion of (x + 2)^(6) .

Find the middle term in the expansion of : \ (x-1/x)^(10)

Find the middle term in the expansion of : \ (x-1/x)^(10)

Write the middle term in the expansion of (x+1/x)^(10)dot