Home
Class 12
MATHS
Let C(1), C(2), C(3)… are the usual bino...

Let `C_(1), C_(2), C_(3)`… are the usual binomial coefficients where `C_(r )= .^(n)C_(r )`. Let `S=C_(1)+2C_(2)+3C_(3)+…+nC_(n)`, then S is equal to

A

`n2^(n)`

B

`2^(n-1)`

C

`n2^(n-1)`

D

`2^(n+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the sum \( S = C_1 + 2C_2 + 3C_3 + \ldots + nC_n \), where \( C_r = \binom{n}{r} \) are the binomial coefficients. ### Step-by-Step Solution: 1. **Define the Sum**: \[ S = C_1 + 2C_2 + 3C_3 + \ldots + nC_n \] We can also express \( S \) starting from \( C_0 \): \[ S = 0 \cdot C_0 + 1 \cdot C_1 + 2 \cdot C_2 + 3 \cdot C_3 + \ldots + n \cdot C_n \] 2. **Rewrite the Sum**: We can write \( S \) as: \[ S = 0 \cdot C_0 + 1 \cdot C_1 + 2 \cdot C_2 + \ldots + (n-1) \cdot C_{n-1} + n \cdot C_n \] 3. **Reverse the Order**: Now, let's reverse the order of the terms: \[ S = n \cdot C_n + (n-1) \cdot C_{n-1} + (n-2) \cdot C_{n-2} + \ldots + 1 \cdot C_1 + 0 \cdot C_0 \] 4. **Combine the Two Expressions**: Adding the two expressions for \( S \): \[ 2S = (0 + n)C_0 + (1 + (n-1))C_1 + (2 + (n-2))C_2 + \ldots + (n-1 + 1)C_{n-1} + (n + 0)C_n \] This simplifies to: \[ 2S = nC_0 + nC_1 + nC_2 + \ldots + nC_n \] 5. **Factor Out \( n \)**: We can factor out \( n \): \[ 2S = n(C_0 + C_1 + C_2 + \ldots + C_n) \] 6. **Use the Binomial Theorem**: The sum of the binomial coefficients is given by: \[ C_0 + C_1 + C_2 + \ldots + C_n = 2^n \] Therefore, we have: \[ 2S = n \cdot 2^n \] 7. **Solve for \( S \)**: Dividing both sides by 2 gives: \[ S = \frac{n \cdot 2^n}{2} = n \cdot 2^{n-1} \] ### Final Result: Thus, the value of \( S \) is: \[ \boxed{n \cdot 2^{n-1}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If C_(0) , C_(1), C_(2), …, C_(n) are the binomial coefficients in the expansion of (1 + x)^(n) , prove that (C_(0) + 2C_(1) + C_(2) )(C_(1) + 2C_(2) + C_(3))…(C_(n-1) + 2C_(n) + C_(n+1)) ((n-2)^(n))/((n+1)!) prod _(r=1)^(n) (C_(r-1) + C_(r)) .

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1. C_(1) - 2 . C_(2) + 3.C_(3) - 4. C_(4) + ...+ (-1)^(n-1) nC_(n)=

if .^(2n)C_(2):^(n)C_(2)=9:2 and .^(n)C_(r)=10 , then r is equal to

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1^(2). C_(1) - 2^(2) . C_(2)+ 3^(2). C_(3) -4^(2)C_(4) + ...+ (-1).""^(n-2)n^(2)C_(n)= .

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then C_(0)""^(2) + 2 C_(1)""^(2) + 3C_(2)""^(2) + ...+ (n +1)C_(n)""^(2) =

If C_(0), C_(1), C_(2), ..., C_(n) denote the binomial cefficients in the expansion of (1 + x )^(n) , then 1^(2).C_(1) + 2^(2) + 3^(3).C_(3) + ...+n^(2).C_(n)= .

If C_(0),C_(1), C_(2),...,C_(N) denote the binomial coefficients in the expansion of (1 + x)^(n) , then 1^(3). C_(1)-2^(3). C_(3) - 4^(3) . C_(4) + ...+ (-1)^(n-1)n^(3) C_(n)=

If C_(0), C_(1), C_(2),...,C_(n) denote the binomial coefficients in the expansion of (1 + x)^n) , then xC_(0)-(x -1) C_(1)+(x-2)C_(2)-(x -3)C_(3)+...+(-1)^(n) (x -n) C_(n)=

""^(n)C_(r)+2""^(n)C_(r-1)+^(n)C_(r-2) is equal to

If C_(0), C_(1), C_(2),..., C_(n) are binomial coefficients in the expansion of (1 + x)^(n), then the value of C_(0) + (C_(1))/(2) + (C_(2))/(3) + (C_(3))/(4) +...+ (C_(n))/(n+1) is