Home
Class 12
MATHS
If A=sin^(2)x+cos^(4)x, then for all rea...

If `A=sin^(2)x+cos^(4)x`, then for all real x

A

`(3)/(4)le p le 1`

B

`(3)/(16)le p le (1)/(4)`

C

`(1)/(4)le p le (1)/(2)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If A = sin^2x + cos^4 x , then for all real x :

Let y=sin^(2)x+cos^(4)x . Then, for all real x (a) the maximum value of y is 2 (b) the minimum value of y is 3/4

If A""=""sin^2x""+""cos^4x , then for all real x : (1) 3/4lt=Alt=1 (2) (13)/(16)lt=Alt=1 (3) 1lt=Alt=2 (4) 3/4lt=Alt=(13)/(16)

Let F(x) be an indefinite integral of sin^(2)x Statement I The function F(x) satisfies F(x+pi)=F(x) for all real x. Because Statement II sin^(2)(x+pi)=sin^(2)x, for all real x.

If A = sin^2 theta+ cos^4 theta , then for all real values of theta

Let f(x) = sin(x/3) + cos((3x)/10) for all real x. Find the least natural number n such that f(npi + x) = f(x) for all real x.

If x=cos^2theta+sin^4theta then for all real values of theta

The set of values of k for which x^2 - kx + sin^-1 (sin 4) > 0 for all real x is

find all the possible triplets (a_(1), a_(2), a_(3)) such that a_(1)+a_(2) cos (2x)+a_(3) sin^(2) (x)=0 for all real x.

Let f(x) = sin^6x + cos^6x + k(sin^4 x + cos^4 x) for some real number k. Determine(a) all real numbers k for which f(x) is constant for all values of x.