Home
Class 12
MATHS
The function f(x) = {x} sin (pi [x]), ...

The function `f(x) = {x} sin (pi [x])`, where [.] denotes the greatest integer function and {.} is the fraction part function , is discontinuous at

A

all x

B

all integer points

C

no x

D

x which is not an integer

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve : 4{x}= x+ [x] (where [*] denotes the greatest integer function and {*} denotes the fractional part function.

The period of the function f(x)=Sin(x +3-[x+3]) where [] denotes the greatest integer function

The function f( x ) = [x] + sqrt{{ x}} , where [.] denotes the greatest Integer function and {.} denotes the fractional part function respectively, is discontinuous at

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

if f(x) = cos pi (|x|+[x]), where [.] denotes the greatest integer , function then which is not true ?

The function f(x)=[x]^(2)+[-x^(2)] , where [.] denotes the greatest integer function, is

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is discontinuous

f(x)=[x^(2)]-{x}^(2), where [.] and {.} denote the greatest integer function and the fractional part function , respectively , is

Solve 2[x]=x+{x},where [.] and {} denote the greatest integer function and the fractional part function, respectively.