Home
Class 12
MATHS
lim(x to 0)(ln(1+x))/(x^(2))+(x-1)/(x)=...

`lim_(x to 0)(ln(1+x))/(x^(2))+(x-1)/(x)=`

A

`oo`

B

`(1)/(2)`

C

`-(1)/(2)`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \left( \frac{\ln(1+x)}{x^2} + \frac{x-1}{x} \right) \), we will break it down into manageable steps. ### Step 1: Simplify the expression We can rewrite the limit as: \[ \lim_{x \to 0} \left( \frac{\ln(1+x)}{x^2} + \frac{x-1}{x} \right) = \lim_{x \to 0} \left( \frac{\ln(1+x)}{x^2} + 1 - \frac{1}{x} \right) \] ### Step 2: Use the Taylor series expansion for \( \ln(1+x) \) The Taylor series expansion of \( \ln(1+x) \) around \( x=0 \) is: \[ \ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots \] Substituting this into our limit gives: \[ \lim_{x \to 0} \left( \frac{x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots}{x^2} + 1 - \frac{1}{x} \right) \] ### Step 3: Simplify the fraction Now, we can simplify the fraction: \[ \frac{x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots}{x^2} = \frac{x}{x^2} - \frac{\frac{x^2}{2}}{x^2} + \frac{\frac{x^3}{3}}{x^2} - \frac{\frac{x^4}{4}}{x^2} + \cdots \] This simplifies to: \[ \frac{1}{x} - \frac{1}{2} + \frac{x}{3} - \frac{x^2}{4} + \cdots \] ### Step 4: Combine the terms Now, we substitute this back into our limit: \[ \lim_{x \to 0} \left( \left( \frac{1}{x} - \frac{1}{2} + \frac{x}{3} - \frac{x^2}{4} + \cdots \right) + 1 - \frac{1}{x} \right) \] The \( \frac{1}{x} \) terms cancel out: \[ \lim_{x \to 0} \left( -\frac{1}{2} + 1 + \frac{x}{3} - \frac{x^2}{4} + \cdots \right) \] ### Step 5: Evaluate the limit As \( x \to 0 \), the terms involving \( x \) vanish: \[ -\frac{1}{2} + 1 = \frac{1}{2} \] ### Final Answer Thus, the limit is: \[ \boxed{\frac{1}{2}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Statement-1 : lim_(x to 0) (1 - cos x)/(x(2^(x) - 1)) = (1)/(2) log_(2) e . Statement : lim_(x to 0) ("sin" x)/(x) = 1 , lim_(x to 0) (a^(x) - 1)/(x) = log a, a gt 0

lim_(x rarr oo)(log(1+x))/(x)

Evaluate lim_(x to 0) (sinx+log(1-x))/(x^(2)).

lim_(xto0) (ln(2+x^(2))-ln(2-x^(2)))/(x^(2)) is equal to

lim_(x to 0) (log (1 + 2x))/(x) + lim_(x to 0) (x^(4) - 2^(4))/(x - 2) equals

lim_(x rarr0)(log_(e)(1+x)-x)/(x^(2))=-(1)/(2)

Let a =lim _(xto0) (ln (cos 2x ))/( 3x ^(2)) , b = lim _(xto0) (sin ^(2) 2x )/(x (1-e ^(x))), c = lim _(x to 1) (sqrtx-x )/( ln x). Then a,b,c satisfy :

lim_(x→0) (√(x+1)−1)/x

lim_(x to 0) (cos 2x-1)/(cos x-1)

The value of lim_(xto0)(x cosx-log(1+x))/(x^(2)) is