Home
Class 12
MATHS
if sum(r=0)^(25).^(50)C(r)(.^(50-r)C(25-...

if `sum_(r=0)^(25).^(50)C_(r)(.^(50-r)C_(25-r))=k(.^(50)C_25)`, then k equals:

A

`2^(25)`

B

`2^(25) -1`

C

`2^(24)`

D

`(25)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \[ \sum_{r=0}^{25} \binom{50}{r} \binom{50-r}{25-r} \] and express it in the form \( k \cdot \binom{50}{25} \). ### Step 1: Understand the Binomial Coefficient Recall that the binomial coefficient \(\binom{n}{r}\) is defined as: \[ \binom{n}{r} = \frac{n!}{r!(n-r)!} \] ### Step 2: Rewrite the Summation We can rewrite the summation as follows: \[ \sum_{r=0}^{25} \binom{50}{r} \binom{50-r}{25-r} \] ### Step 3: Simplify the Terms Using the definition of the binomial coefficient, we have: \[ \binom{50}{r} = \frac{50!}{r!(50-r)!} \] and \[ \binom{50-r}{25-r} = \frac{(50-r)!}{(25-r)!(50-25)!} = \frac{(50-r)!}{(25-r)! \cdot 25!} \] ### Step 4: Combine the Terms Now, substituting these into the summation: \[ \sum_{r=0}^{25} \frac{50!}{r!(50-r)!} \cdot \frac{(50-r)!}{(25-r)! \cdot 25!} \] This simplifies to: \[ \sum_{r=0}^{25} \frac{50!}{r!(25-r)! \cdot 25!} \] ### Step 5: Factor Out Constants Notice that \( \frac{50!}{25!} \) is a common factor: \[ \frac{50!}{25!} \sum_{r=0}^{25} \frac{1}{r!(25-r)!} \] ### Step 6: Recognize the Binomial Theorem The summation \( \sum_{r=0}^{25} \frac{1}{r!(25-r)!} \) is the expansion of \( (1+1)^{25} \): \[ \sum_{r=0}^{25} \binom{25}{r} = 2^{25} \] ### Step 7: Combine Everything Together Thus, we can rewrite our expression as: \[ \frac{50!}{25!} \cdot \frac{1}{25!} \cdot 2^{25} \] This is equivalent to: \[ \binom{50}{25} \cdot 2^{25} \] ### Step 8: Set Equal to Given Expression Now, we have: \[ \sum_{r=0}^{25} \binom{50}{r} \binom{50-r}{25-r} = \binom{50}{25} \cdot 2^{25} \] According to the problem, this equals \( k \cdot \binom{50}{25} \). ### Step 9: Solve for \( k \) By comparing both sides, we find: \[ k = 2^{25} \] ### Final Answer Thus, the value of \( k \) is: \[ \boxed{2^{25}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If Sigma_(r=0)^(25) (""^(50)C_(r)""^(50-r)C_(25-r))=K(""^(50)C_(25)) , then K is equal to

Find the sum sum_(r=0)^(5)""^(32)C_(6r) .

If sum_(r=0)^(n){("^(n)C_(r-1))/('^(n)C_(r )+^(n)C_(r-1))}^(3)=(25)/(24) , then n is equal to (a) 3 (b) 4 (c) 5 (d) 6

The value of sum_(r=0)^(15)r^(2)((""^(15)C_(r))/(""^(15)C_(r-1))) is equal to

sum_(r=0)^n(-2)^r*(nC_r)/((r+2)C_r) is equal to

sum_(r = 0)^(n-1) (C_r)/(C_r + C_(r+1)) =

The value of sum_(r=0)^(n) sum_(p=0)^(r) ""^(n)C_(r) . ""^(r)C_(p) is equal to

Let z_(r),r=1,2,3,...,50 be the roots of the equation sum_(r=0)^(50)(z)^(r)=0 . If sum_(r=1)^(50)1/(z_(r)-1)=-5lambda , then lambda equals to

Let P =sum_(r=1)^(50)(""^(50+r)C_(r)(2r-1))/(""^(50)C_(r)(50+r)), Q = sum_(r=0)^(50)(""^(50)C_(r))^(2), R = sum_(r=0)^(100)(-1)^(r) (""^(100)C_(r))^(2) The value of P - R is equal to

Let P = sum_(r=1)^(50) (""^(50+r)C_(r)(2r-1))/(""^(50)C_(r)(50+r)), Q = sum_(r=0)^(50)(""^(50)C_(r))^(2), R = sum_(r=0)^(100)(-1)^(r) (""^(100)C_(r))^(2) The value of Q + R is equal to