Home
Class 12
MATHS
If 1, log3sqrt(3^(1-x)+2), log3 (4*3^...

If `1, log_3sqrt(3^(1-x)+2), log_3 (4*3^x-1)` are in AP then x equals

A

`log_(3)4`

B

`1- log_(3) 4`

C

`1- log_(4) 3`

D

`log_(4)3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x \) such that the terms \( 1 \), \( \log_3 \sqrt{3^{1-x} + 2} \), and \( \log_3 (4 \cdot 3^x - 1) \) are in arithmetic progression (AP). ### Step 1: Set up the AP condition For three numbers \( a, b, c \) to be in AP, the condition is: \[ 2b = a + c \] In our case: \[ 2 \log_3 \sqrt{3^{1-x} + 2} = 1 + \log_3 (4 \cdot 3^x - 1) \] ### Step 2: Simplify the logarithmic expression Using the property of logarithms, we can rewrite \( \log_3 \sqrt{3^{1-x} + 2} \): \[ \log_3 \sqrt{3^{1-x} + 2} = \frac{1}{2} \log_3 (3^{1-x} + 2) \] Substituting this into the AP condition gives: \[ 2 \cdot \frac{1}{2} \log_3 (3^{1-x} + 2) = 1 + \log_3 (4 \cdot 3^x - 1) \] This simplifies to: \[ \log_3 (3^{1-x} + 2) = 1 + \log_3 (4 \cdot 3^x - 1) \] ### Step 3: Use properties of logarithms Using the property \( \log_a b + \log_a c = \log_a (bc) \), we can rewrite the right-hand side: \[ \log_3 (3^{1-x} + 2) = \log_3 (3) + \log_3 (4 \cdot 3^x - 1) \] This simplifies to: \[ \log_3 (3^{1-x} + 2) = \log_3 (3(4 \cdot 3^x - 1)) \] ### Step 4: Remove the logarithm Since the logarithm function is one-to-one, we can equate the arguments: \[ 3^{1-x} + 2 = 3(4 \cdot 3^x - 1) \] ### Step 5: Expand and simplify Expanding the right-hand side: \[ 3^{1-x} + 2 = 12 \cdot 3^x - 3 \] Rearranging gives: \[ 3^{1-x} + 5 = 12 \cdot 3^x \] ### Step 6: Substitute \( t = 3^x \) Let \( t = 3^x \), then \( 3^{1-x} = \frac{3}{t} \): \[ \frac{3}{t} + 5 = 12t \] Multiplying through by \( t \) to eliminate the fraction: \[ 3 + 5t = 12t^2 \] Rearranging gives: \[ 12t^2 - 5t - 3 = 0 \] ### Step 7: Solve the quadratic equation Using the quadratic formula \( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ t = \frac{5 \pm \sqrt{(-5)^2 - 4 \cdot 12 \cdot (-3)}}{2 \cdot 12} \] Calculating the discriminant: \[ t = \frac{5 \pm \sqrt{25 + 144}}{24} = \frac{5 \pm \sqrt{169}}{24} = \frac{5 \pm 13}{24} \] This gives two possible values for \( t \): \[ t = \frac{18}{24} = \frac{3}{4} \quad \text{and} \quad t = \frac{-8}{24} = -\frac{1}{3} \] ### Step 8: Determine valid solutions Since \( t = 3^x \) must be positive, we discard \( t = -\frac{1}{3} \). Thus, we have: \[ 3^x = \frac{3}{4} \] ### Step 9: Take logarithm to solve for \( x \) Taking logarithm base 3: \[ x = \log_3 \left(\frac{3}{4}\right) = \log_3 3 - \log_3 4 = 1 - \log_3 4 \] ### Final Answer Thus, the value of \( x \) is: \[ x = 1 - \log_3 4 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 1,log_9(3^(1-x)+2), log_3(4*3^x-1) are in A.P then x equals to

If log_(3)2,log_(3)(2^(x)-5) and log_(3)(2^(x)-7/2) are in A.P., then x is equal to

If log_(2)(5.2^(x)+1),log_(4)(2^(1-x)+1) and 1 are in A.P,then x equals

If log_(2)(5.2^(x)+1),log_(4)(2^(1-x)+1) and 1 are in A.P,then x equals

If log_(10)2,log_(10)(2^(x)-1) and log_(10)(2^(x)+3) are in A.P then the value of x is

For what value of x is the ninth term in the expansion of (3^(log_3 sqrt(25^(x-1) +7)) + 3^(-1/8 log_3 (5^(x-1) +1)))^10 is equal to 180

If xy^(2) = 4 and log_(3) (log_(2) x) + log_(1//3) (log_(1//2) y)=1 , then x equals

if 1/log_3 pi +1/log_4 pi >x then x be

If log2,log(2^x-1),log(2^x+3) are in A.P., write the value of xdot

If 3^(x+1)=6^(log_(2)3) , then x is equal to