Home
Class 12
MATHS
Differentiate tan^(-1)[(sqrt(1+x^2)-1)/x...

Differentiate `tan^(-1)[(sqrt(1+x^2)-1)/x]` with respect to `x`

A

`(1)/( 2) . ( 1)/( 1 + x^(2))`

B

`( 1)/( 1+ x^(2))`

C

`( 2)/( 1+ x^(2))`

D

`(1)/(2). (1)/( 1+ 2x)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)x ,x!=0.

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)x ,x!=0.

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)x , when x!=0.

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x) with respect to sin^(-1)((2x)/(1+x^2)),

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x) with respect to sin^(-1)((2x)/(1+x^2)), if -1

Differentiate: tan^(-1)""(sqrt(1-x^2))/x with respect to cos^(-1)(2xsqrt(1-x^2)) , when x ne0

Differentiate tan^(-1){x/(1+sqrt(1-x^2))},\ -1

Differentiate tan^-1((4sqrt(x))/(1-4x))

If x in (1/(sqrt(2)),\ 1) , differentiate tan^(-1)((sqrt(1-x^2))/x) with respect to cos^(-1)(2xsqrt(1-x^2)) .

Differentiate tan^(-1)((x)/(sqrt(1-x^(2)))) with respect to cos^(-1)(2x^(2)-1) .