Home
Class 12
MATHS
Let vec(a) and vec(b) be two unit vector...

Let `vec(a)` and `vec(b)` be two unit vectors such that `vec(a).vec(b)=0` For some `x,y in R`, let `vec(c)=xvec(a)+yvec(b)+(vec(a)xxvec(b))` If `|vec(c)|=2` and the vector `vec(c)` is inclined at same angle `alpha` to both `vec(a)` and `vec(b)` then the value of `8cos^2alpha` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Understand the given information We have two unit vectors \(\vec{a}\) and \(\vec{b}\) such that \(\vec{a} \cdot \vec{b} = 0\). This means that \(\vec{a}\) and \(\vec{b}\) are perpendicular to each other. We also have a vector \(\vec{c} = x\vec{a} + y\vec{b} + \vec{a} \times \vec{b}\). ### Step 2: Find the magnitude of \(\vec{c}\) We know that \(|\vec{c}| = 2\). Therefore, we can write: \[ |\vec{c}|^2 = (x\vec{a} + y\vec{b} + \vec{a} \times \vec{b}) \cdot (x\vec{a} + y\vec{b} + \vec{a} \times \vec{b}) = 4 \] ### Step 3: Expand the dot product Using the properties of dot products: \[ |\vec{c}|^2 = x^2 |\vec{a}|^2 + y^2 |\vec{b}|^2 + |\vec{a} \times \vec{b}|^2 + 2xy (\vec{a} \cdot \vec{b}) + 2x(\vec{a} \cdot (\vec{a} \times \vec{b})) + 2y(\vec{b} \cdot (\vec{a} \times \vec{b})) \] Since \(\vec{a} \cdot \vec{b} = 0\) and \(\vec{a} \cdot (\vec{a} \times \vec{b}) = 0\) and \(\vec{b} \cdot (\vec{a} \times \vec{b}) = 0\), we simplify this to: \[ |\vec{c}|^2 = x^2 + y^2 + |\vec{a} \times \vec{b}|^2 \] ### Step 4: Calculate \(|\vec{a} \times \vec{b}|\) Since \(\vec{a}\) and \(\vec{b}\) are unit vectors and perpendicular, we have: \[ |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin(90^\circ) = 1 \] Thus, \(|\vec{a} \times \vec{b}|^2 = 1\). ### Step 5: Substitute back into the equation Now substituting back, we get: \[ x^2 + y^2 + 1 = 4 \implies x^2 + y^2 = 3 \] ### Step 6: Relate \(x\) and \(y\) to \(\alpha\) Since \(\vec{c}\) is inclined at the same angle \(\alpha\) to both \(\vec{a}\) and \(\vec{b}\), we have: \[ \vec{a} \cdot \vec{c} = |\vec{c}| \cos(\alpha) \quad \text{and} \quad \vec{b} \cdot \vec{c} = |\vec{c}| \cos(\alpha) \] Thus: \[ x = 2 \cos(\alpha) \quad \text{and} \quad y = 2 \cos(\alpha) \] ### Step 7: Substitute \(x\) and \(y\) into the equation Substituting \(x\) and \(y\) into \(x^2 + y^2 = 3\): \[ (2 \cos(\alpha))^2 + (2 \cos(\alpha))^2 = 3 \] \[ 4 \cos^2(\alpha) + 4 \cos^2(\alpha) = 3 \implies 8 \cos^2(\alpha) = 3 \] ### Step 8: Conclusion Thus, the value of \(8 \cos^2(\alpha)\) is: \[ \boxed{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If vec(a) and vec(b) are two vectors such that |vec(a)|= 2, |vec(b)| = 3 and vec(a)*vec(b)=4 then find the value of |vec(a)-vec(b)|

If vec(a) , vec( b) and vec( c ) are unit vectors such that vec(a) + vec(b) + vec( c) = 0 , then the values of vec(a). vec(b)+ vec(b) . vec( c )+ vec( c) .vec(a) is

If vec(a) and vec(b) are unit vectors inclined at an angle alpha , then the value of | vec(a) - vec(b)| is

Let vec a and vec b be unit vectors such that | vec a+ vec b|=sqrt(3) . Then find the value of (2 vec a+5 vec b).((3 vec a+ vec b+ vec axx vec b))dot

If vec(a) and vec(b) are two vector such that |vec(a) +vec(b)| =|vec(a)| , then show that vector |2a +b| is perpendicular to vec(b) .

If vec(a)vec(b)vec(c ) and vec(d) are vectors such that vec(a) xx vec(b) = vec(c ) xx vec(d) and vec(a) xx vec(c ) = vec(b)xxvec(d) . Then show that the vectors vec(a) -vec(d) and vec(b) -vec(c ) are parallel.

Let vec a , vec b , vec c be the three unit vectors such that vec a+5 vec b+3 vec c= vec0 , then vec a. ( vec bxx vec c) is equal to

If two vectors vec(a) and vec (b) are such that |vec(a) . vec(b) | = |vec(a) xx vec(b)|, then find the angle the vectors vec(a) and vec (b)

Given vec(A)xxvec(B)=vec(0) and vec(B)xxvec(C )=vec(0) Prove that vec(A)xxvec(C )=vec(0)

Let vec(A), vec(B) and vec(C) , be unit vectors. Suppose that vec(A).vec(B)=vec(A).vec(C)=0 and the angle between vec(B) and vec(C) is pi/6 then