Home
Class 12
MATHS
If ("lim")(xvec0)({(a-n)n x-tanx}sinn x...

If `("lim")_(xvec0)({(a-n)n x-tanx}sinn x)/(x^2)-0,` where `n` is nonzero real number, the `a` is 0 (b) `(n+1)/n` (c) `n` (d) `n+1/n`

A

0

B

`(n+1)/n`

C

`n`

D

`n+1/n`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If ("lim")_(xrarr0)({(a-n)n x-tanx}sinn x)/(x^2)=0, where n is nonzero real number, the a is 0 (b) (n+1)/n (c) n (d) n+1/n

If lim_(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must be equal to (a) 4 (b) 1 (c) 2 (d) 3

If lim_(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must be equal to 4 (b) 1 (c) 2 (d) 3

("lim")_(n→oo)(a n-(1+n^2)/(1+n))=b , where a is a finite number, then a=1 (b) a=0 (c) b=1 (d) b=-1

If l =lim_(xrarr0) (tanx^(n))/((tanx)^m) , where m,n in N , then

(lim)_(xvec0)(l"n"(1+2x)-2"ln"(1+x))/(x^2) is equal to 3 b. 1 c. -1 d. 0

Prove that lim_(xrarr0) ((1+x)^(n) - 1)/(x) = n .

For positive integer n_1,n_2 the value of the expression (1+i)^(n1) +(1+i^3)^(n1) (1+i^5)^(n2) (1+i^7)^(n_20), where i=sqrt-1, is a real number if and only if (a) n_1=n_2+1 (b) n_1=n_2-1 (c) n_1=n_2 (d) n_1 > 0, n_2 > 0

("lim")_(xvec1)((1-x)(1-x^2)...(1-x^(2n)))/({(1-x)(1-x^2)...(1-x^n)}^2),n in N ,e q u a l s ^2n P_n (b) ^2n C_n (c) (2n)! (d) none of these

If m , n in N ,("lim")_(xvec0)(sinx^n)/((sinx)^m)i s (a) 1, if n=m (b) 0, if n>m