Home
Class 12
MATHS
If vec(a),vec(b),vec(c) are mutually per...

If `vec(a),vec(b),vec(c)` are mutually perpendicular vectors having magnitudes 1,2,3 respectively, then `[vec(a)+vec(b)+vec(c)" "vec(b)-vec(a)" "vec(c)]=`

A

0

B

6

C

12

D

18

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the scalar triple product of the vectors \(\vec{a} + \vec{b} + \vec{c}\), \(\vec{b} - \vec{a}\), and \(\vec{c}\). Given that \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are mutually perpendicular vectors with magnitudes 1, 2, and 3 respectively, we can proceed as follows: ### Step 1: Understand the Vectors We know: - \(|\vec{a}| = 1\) - \(|\vec{b}| = 2\) - \(|\vec{c}| = 3\) Since the vectors are mutually perpendicular, we can represent them in a Cartesian coordinate system: - Let \(\vec{a} = (1, 0, 0)\) - Let \(\vec{b} = (0, 2, 0)\) - Let \(\vec{c} = (0, 0, 3)\) ### Step 2: Calculate \(\vec{a} + \vec{b} + \vec{c}\) \[ \vec{a} + \vec{b} + \vec{c} = (1, 0, 0) + (0, 2, 0) + (0, 0, 3) = (1, 2, 3) \] ### Step 3: Calculate \(\vec{b} - \vec{a}\) \[ \vec{b} - \vec{a} = (0, 2, 0) - (1, 0, 0) = (-1, 2, 0) \] ### Step 4: Set Up the Scalar Triple Product The scalar triple product can be computed as: \[ [\vec{u}, \vec{v}, \vec{w}] = \vec{u} \cdot (\vec{v} \times \vec{w}) \] where \(\vec{u} = \vec{a} + \vec{b} + \vec{c}\), \(\vec{v} = \vec{b} - \vec{a}\), and \(\vec{w} = \vec{c}\). ### Step 5: Calculate \(\vec{v} \times \vec{w}\) First, we need to compute \(\vec{v} \times \vec{w}\): \[ \vec{v} = (-1, 2, 0), \quad \vec{w} = (0, 0, 3) \] Using the determinant to find the cross product: \[ \vec{v} \times \vec{w} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 2 & 0 \\ 0 & 0 & 3 \end{vmatrix} = \hat{i}(2 \cdot 3 - 0 \cdot 0) - \hat{j}(-1 \cdot 3 - 0 \cdot 0) + \hat{k}(-1 \cdot 0 - 2 \cdot 0) \] \[ = 6\hat{i} + 3\hat{j} + 0\hat{k} = (6, 3, 0) \] ### Step 6: Calculate \(\vec{u} \cdot (\vec{v} \times \vec{w})\) Now, we compute the dot product: \[ \vec{u} = (1, 2, 3) \] \[ \vec{v} \times \vec{w} = (6, 3, 0) \] \[ \vec{u} \cdot (\vec{v} \times \vec{w}) = (1, 2, 3) \cdot (6, 3, 0) = 1 \cdot 6 + 2 \cdot 3 + 3 \cdot 0 = 6 + 6 + 0 = 12 \] ### Final Answer Thus, the value of the scalar triple product is: \[ [\vec{a} + \vec{b} + \vec{c}, \vec{b} - \vec{a}, \vec{c}] = 12 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a , vec b , vec c are mutually perpendicular unit vectors, find |2 vec a+ vec b+ vec c|dot

If vec a , vec b , and vec c are mutually perpendicular vectors of equal magnitudes, then find the angle between vectors vec a and vec a+ vec b+ vec c dot

Let vec(a), vec(b), vec(c) be vectors of length 3, 4, 5 respectively. Let vec(a) be perpendicular to vec(b)+vec(c), vec(b) to vec(c)+vec(a) and vec(c) to vec(a)+vec(b) . Then |vec(a)+vec(b)+vec(c)| is :

If vec a ,\ vec b ,\ vec c are any time mutually perpendicular vectors of equal magnitude a , then | vec a+ vec b+ vec c| is equal to a b. sqrt(2)a c. sqrt(3)a d. 2a e. none of these

If vec a ,\ vec b ,\ vec c are three mutually perpendicular unit vectors, then prove that | vec a+ vec b+ vec c|=sqrt(3)

If vec(a), vec(b) and vec(c) are three vectors such that vec(a) times vec(b)=vec(c) and vec(b) times vec(c)=vec(a)," prove that "vec(a), vec(b), vec(c) are mutually perpendicular and abs(vec(b))=1 and abs(vec(c))=abs(vec(a)) .

If vec(a) , vec( b) and vec( c ) are unit vectors such that vec(a) + vec(b) + vec( c) = 0 , then the values of vec(a). vec(b)+ vec(b) . vec( c )+ vec( c) .vec(a) is

If vec a , vec ba n d vec c are three mutually perpendicular vectors, then the vector which is equally inclined to these vectors is a. vec a+ vec b+ vec c b. vec a/(| vec a|)+ vec b/(| vec b|)+ vec c/(| vec c|) c. vec a/(| vec a|^2)+ vec b/(| vec b|^2)+ vec c/(| vec c|^2) d. | vec a| vec a-| vec b| vec b+| vec c| vec c

If vec a , vec b ,\ vec c are three non coplanar mutually perpendicular unit vectors then [ vec a\ vec b\ vec c] is +-1 b. "\ "0"\ " c. -1 d. 2

If vec(a), vec(b), vec(c ) are three vectors such that vec(a) + vec(b) + vec(c ) = 0 and | vec(a) | =2, |vec(b) | =3, | vec(c ) = 5 , then the value of vec(a). vec(b) + vec(b) . vec( c ) + vec(c ).vec(a) is