Home
Class 12
PHYSICS
The work done by the force vec( F ) = 6 ...

The work done by the force `vec( F ) = 6 hat(i) + 2 hat(j)` N in displacing an object from` vec( r_(1)) = 3 hat(i) + 8 hat( j)` to `vec( r_(2)) = 5 hat( i) - 4 hat(j)` m , is

A

(a)12 J

B

(b)`-36 J`

C

(c)36J

D

(d)`-12J`

Text Solution

AI Generated Solution

The correct Answer is:
To find the work done by the force \(\vec{F} = 6 \hat{i} + 2 \hat{j}\) N in displacing an object from \(\vec{r_1} = 3 \hat{i} + 8 \hat{j}\) m to \(\vec{r_2} = 5 \hat{i} - 4 \hat{j}\) m, we can follow these steps: ### Step 1: Calculate the Displacement Vector The displacement vector \(\vec{dr}\) can be calculated using the formula: \[ \vec{dr} = \vec{r_2} - \vec{r_1} \] Substituting the given vectors: \[ \vec{dr} = (5 \hat{i} - 4 \hat{j}) - (3 \hat{i} + 8 \hat{j}) \] Now, perform the subtraction: \[ \vec{dr} = (5 - 3) \hat{i} + (-4 - 8) \hat{j} = 2 \hat{i} - 12 \hat{j} \] ### Step 2: Calculate the Work Done The work done \(W\) by the force is given by the dot product of the force vector and the displacement vector: \[ W = \vec{F} \cdot \vec{dr} \] Substituting the values of \(\vec{F}\) and \(\vec{dr}\): \[ W = (6 \hat{i} + 2 \hat{j}) \cdot (2 \hat{i} - 12 \hat{j}) \] Calculating the dot product: \[ W = (6 \cdot 2) + (2 \cdot -12) = 12 - 24 = -12 \text{ J} \] ### Conclusion The work done by the force in displacing the object is \(-12\) Joules. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If vec(F ) = (60 hat(i) + 15 hat(j) - 3 hat(k)) N and vec(V) = (2 hat(i) - 4 hat(j) + 5 hat(k)) m/s, then instantaneous power is:

If vec(F ) = hat(i) +2 hat(j) + hat(k) and vec(V) = 4hat(i) - hat(j) + 7hat(k) what is vec(F) . vec(v) ?

An electric field is given by vec(E)=(yhat(i)+xhat(j))N/C . Find the work done (in J) in moving a 1 C charge from vec(r)_(A)=(2hat(i)+2hat(j)) m to vec(r)_(B)=(4hat(i)+hat(j))m .

If vec(a) = hat(i) - 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) - 3 hat(j) + 5 hat(k) , then angle between vec(a) and vec(b) is

Find the projection of vec(b)+ vec(c ) on vec(a) where vec(a)= 2 hat(i) -2hat(j) + hat(k), vec(b)= hat(i) + 2hat(j)- 2hat(k), vec(c ) = 2hat(i) - hat(j) + 4hat(k)

Find the torque of a force vec(F)=-3hat(i)+hat(j)+5hat(k) acting at the point vec(R)=7hat(i)+3hat(j)+hat(k) .

If vec(a) = 2 hat(i) + hat(j) + 2hat(k) and vec(b) = 5hat(i)- 3 hat(j) + hat(k) , then the projection of vec(b) on vec(a) is

Show that the two vectors vec(A) and vec(B) are parallel , where vec(A) = hat(i) + 2 hat(j) + hat(k) and vec(B) = 3 hat(i) + 6 hat(j) + 3 hat(k)

Determine lambda such that a vector vec(r) is at right angles to each of the vectors vec(a) = lambda hat(i) + hat(j) + 3hat(k), vec(b) = 2hat(i) + hat(j) - lambda hat(k), vec(c) = -2hat(i) + lambda hat(j) + 3hat(k) .

The torque of force vec(F)=-3hat(i)+hat(j)+5hat(k) acting at the point vec(r)=7hat(i)+3hat(j)+hat(k) is ______________?