Home
Class 12
MATHS
If cosalpha+cosbeta=a ,sinalpha+sinbeta=...

If `cosalpha+cosbeta=a ,sinalpha+sinbeta=b and alpha-beta=2theta,` then `(cos3theta)/(costheta)=`

A

`a^(2) + b^(2) -2`

B

`a^(2) +b^(2) -3`

C

`3-a^(2) - 3`

D

` (a^(2) +b^(2))/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\frac{\cos 3\theta}{\cos \theta}\) given that \(\cos \alpha + \cos \beta = a\), \(\sin \alpha + \sin \beta = b\), and \(\alpha - \beta = 2\theta\). ### Step-by-Step Solution: 1. **Square the equations for cosine and sine:** \[ (\cos \alpha + \cos \beta)^2 = a^2 \quad \text{(1)} \] \[ (\sin \alpha + \sin \beta)^2 = b^2 \quad \text{(2)} \] 2. **Expand both equations:** From equation (1): \[ \cos^2 \alpha + \cos^2 \beta + 2 \cos \alpha \cos \beta = a^2 \] From equation (2): \[ \sin^2 \alpha + \sin^2 \beta + 2 \sin \alpha \sin \beta = b^2 \] 3. **Add the two equations:** \[ (\cos^2 \alpha + \sin^2 \alpha) + (\cos^2 \beta + \sin^2 \beta) + 2(\cos \alpha \cos \beta + \sin \alpha \sin \beta) = a^2 + b^2 \] Using the identity \(\cos^2 \theta + \sin^2 \theta = 1\): \[ 1 + 1 + 2(\cos \alpha \cos \beta + \sin \alpha \sin \beta) = a^2 + b^2 \] \[ 2 + 2\cos(\alpha - \beta) = a^2 + b^2 \] 4. **Substitute \(\alpha - \beta = 2\theta\):** \[ 2 + 2\cos(2\theta) = a^2 + b^2 \] Dividing through by 2: \[ 1 + \cos(2\theta) = \frac{a^2 + b^2}{2} \] Rearranging gives: \[ \cos(2\theta) = \frac{a^2 + b^2}{2} - 1 \] 5. **Use the half-angle formula for \(\cos(2\theta)\):** The half-angle formula states: \[ \cos(2\theta) = 2\cos^2(\theta) - 1 \] Setting the two expressions for \(\cos(2\theta)\) equal: \[ 2\cos^2(\theta) - 1 = \frac{a^2 + b^2}{2} - 1 \] Simplifying gives: \[ 2\cos^2(\theta) = \frac{a^2 + b^2}{2} \] \[ \cos^2(\theta) = \frac{a^2 + b^2}{4} \quad \text{(3)} \] 6. **Find \(\cos(3\theta)\) using the formula:** The formula for \(\cos(3\theta)\) is: \[ \cos(3\theta) = 4\cos^3(\theta) - 3\cos(\theta) \] 7. **Substitute \(\cos^2(\theta)\) into the formula:** First, find \(\cos^3(\theta)\): \[ \cos^3(\theta) = \cos(\theta) \cdot \cos^2(\theta) = \cos(\theta) \cdot \frac{a^2 + b^2}{4} \] Now substitute back into the equation for \(\cos(3\theta)\): \[ \cos(3\theta) = 4\left(\cos(\theta) \cdot \frac{a^2 + b^2}{4}\right) - 3\cos(\theta) \] \[ = (a^2 + b^2)\cos(\theta) - 3\cos(\theta) \] \[ = (a^2 + b^2 - 3)\cos(\theta) \] 8. **Finally, calculate \(\frac{\cos(3\theta)}{\cos(\theta)}\):** \[ \frac{\cos(3\theta)}{\cos(\theta)} = a^2 + b^2 - 3 \] ### Final Answer: \[ \frac{\cos(3\theta)}{\cos(\theta)} = a^2 + b^2 - 3 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If cos alpha+cos beta=a*sin alpha+sin beta=b and alpha-beta=2 theta then (cos3 theta)/(cos theta)=

If sinalpha+sinbeta=a ,cosalpha+cosbeta=b=>sin(alpha+beta) =

sinalpha+sinbeta=a ,cosalpha+cosbeta=b=>sin(alpha+beta)

If cos alpha + cosbeta=a, sinalpha + sinbeta=b and theta is the arithmetic mean between alpha and beta , then (sin2theta + cos 2theta) is equal to :

If cosalpha+cosbeta=a, sinalpha+sinbeta=b, then cos(alpha+beta) is equal to (A) (2ab)/(a^2+b^2) (B) (a^2+b^2)/(a^2-b^2) (C) (a^2-b^2)/(a^2+b^2) (D) (b^2-a^2)/(b^2+a^2)

If cosalpha+cosbeta=0=sinalpha+sinbeta , then prove that cos2alpha+cos2beta+2cos(alpha+beta)=0

If cosalpha+cosbeta=0=sinalpha+sinbeta , then prove that cos2alpha +cos2beta=-2cos(alpha +beta) .

Evaluate |(cosalphacosbeta,cosalpha sinbeta , - sin alpha),(-sin beta,cosbeta,0),(sinalphacosbeta,sinalpha sinbeta,cosalpha)|

If cosalpha+cosbeta=0=s inalpha+s inbeta, then prove that cos2alpha+cos2beta=-2cos(alpha+beta)dot

Prove that |cosalpha-cosbeta|lt=|alpha-beta|