Home
Class 12
MATHS
If f is a function defined as f ( x) = x...

If f is a function defined as `f ( x) = x^(2)-x+5, f: ((1)/(2) , oo) rarr ((19)/(4) , oo)`, and g(x) is its inverse function, then g'(7) is equal to

A

`- (1)/(13)`

B

`(1)/(13)`

C

`(1)/(3)`

D

`-(1)/( 3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( g'(7) \) where \( g(x) \) is the inverse of the function \( f(x) = x^2 - x + 5 \), we will follow these steps: ### Step 1: Identify the function and its inverse We are given: \[ f(x) = x^2 - x + 5 \] and we need to find \( g'(7) \), where \( g(x) \) is the inverse of \( f(x) \). ### Step 2: Find the inverse function To find the inverse function \( g(x) \), we set \( y = f(x) \): \[ y = x^2 - x + 5 \] Rearranging gives us: \[ x^2 - x + (5 - y) = 0 \] This is a quadratic equation in \( x \). The roots can be found using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 1, b = -1, c = 5 - y \). ### Step 3: Substitute values into the quadratic formula Substituting into the formula: \[ x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot (5 - y)}}{2 \cdot 1} \] This simplifies to: \[ x = \frac{1 \pm \sqrt{1 - 20 + 4y}}{2} = \frac{1 \pm \sqrt{4y - 19}}{2} \] ### Step 4: Determine the correct root Since \( f(x) \) is increasing on the interval \( \left(\frac{1}{2}, \infty\right) \), we take the positive root: \[ g(y) = \frac{1 + \sqrt{4y - 19}}{2} \] ### Step 5: Differentiate the inverse function To find \( g'(x) \), we differentiate \( g(y) \): \[ g'(y) = \frac{1}{2} \cdot \frac{1}{2\sqrt{4y - 19}} \cdot 4 = \frac{2}{\sqrt{4y - 19}} \] ### Step 6: Evaluate \( g'(7) \) Now we substitute \( y = 7 \) into \( g'(y) \): \[ g'(7) = \frac{2}{\sqrt{4 \cdot 7 - 19}} = \frac{2}{\sqrt{28 - 19}} = \frac{2}{\sqrt{9}} = \frac{2}{3} \] ### Final Answer Thus, the value of \( g'(7) \) is: \[ \boxed{\frac{2}{3}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x^(3)+3x+1 and g(x) is the inverse function of f(x), then the value of g'(5) is equal to

f:R to R is a function defined by f(x)= 10x -7, if g=f^(-1) then g(x)=

if f(x)=x^x,x in (1,infty) and g(x) be inverse function of f(x) then g^(')(x) must be equal to

Consider a function f(x)=x^(x), AA x in [1, oo) . If g(x) is the inverse function of f(x) , then the value of g'(4) is equal to

Let f(x) = x + cos x + 2 and g(x) be the inverse function of f(x), then g'(3) equals to ........ .

If f:[3,oo)toR is a function defined by f(x)=x^(2)-2x+6 , then the range of f is

f:RtoR is defined as f(x)=x^(3)+2x^(2)+7x+cos(pix) and g be the inverse of function f(x) then g(9) is equal to

If g is the inverse of a function f and f'(x) = 1/(1+x^(5)) , then g'(x) is equal to

f(x)=x^x , x in (0,oo) and let g(x) be inverse of f(x) , then g(x)' must be

Consider the function f(x)=tan^(-1){(3x-2)/(3+2x)}, AA x ge 0. If g(x) is the inverse function of f(x) , then the value of g'((pi)/(4)) is equal to