Home
Class 12
MATHS
The value of lim(xto oo)(2x^(1//2)+3x^...

The value of
`lim_(xto oo)(2x^(1//2)+3x^(1//3)+4x^(1//4)+....nx^(1//n))/((2x-3)^(1//2)+(2x-3)^(1//3)+....+(2x-3)^(1//n))`is

A

`sqrt(2)`

B

2

C

`(1)/(sqrt(3))`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to \infty} \frac{2x^{1/2} + 3x^{1/3} + 4x^{1/4} + \ldots + nx^{1/n}}{(2x - 3)^{1/2} + (2x - 3)^{1/3} + \ldots + (2x - 3)^{1/n}}, \] we will analyze both the numerator and the denominator as \(x\) approaches infinity. ### Step 1: Analyze the Numerator The numerator is \[ 2x^{1/2} + 3x^{1/3} + 4x^{1/4} + \ldots + nx^{1/n}. \] As \(x\) approaches infinity, the term with the highest power will dominate. The highest power in the numerator is \(nx^{1/n}\). Therefore, we can factor out \(x^{1/n}\): \[ = x^{1/n} \left( 2x^{1/2 - 1/n} + 3x^{1/3 - 1/n} + 4x^{1/4 - 1/n} + \ldots + n \right). \] ### Step 2: Analyze the Denominator The denominator is \[ (2x - 3)^{1/2} + (2x - 3)^{1/3} + \ldots + (2x - 3)^{1/n}. \] As \(x\) approaches infinity, we can approximate \(2x - 3 \approx 2x\). Thus, we can factor out \(x^{1/2}\): \[ = x^{1/2} \left( (2 - \frac{3}{x})^{1/2} + (2 - \frac{3}{x})^{1/3} + \ldots + (2 - \frac{3}{x})^{1/n} \right). \] ### Step 3: Simplifying the Limit Now, substituting these factorizations back into the limit gives us: \[ \lim_{x \to \infty} \frac{x^{1/n} \left( 2x^{1/2 - 1/n} + 3x^{1/3 - 1/n} + \ldots + n \right)}{x^{1/2} \left( (2 - \frac{3}{x})^{1/2} + (2 - \frac{3}{x})^{1/3} + \ldots + (2 - \frac{3}{x})^{1/n} \right)}. \] ### Step 4: Canceling Common Factors We can cancel \(x^{1/n}\) from the numerator and \(x^{1/2}\) from the denominator: \[ = \lim_{x \to \infty} \frac{2x^{1/2 - 1/n} + 3x^{1/3 - 1/n} + \ldots + n}{(2 - \frac{3}{x})^{1/2} + (2 - \frac{3}{x})^{1/3} + \ldots + (2 - \frac{3}{x})^{1/n}}. \] ### Step 5: Evaluating the Limit As \(x\) approaches infinity, \(\frac{3}{x} \to 0\), and thus the denominator approaches: \[ (2)^{1/2} + (2)^{1/3} + \ldots + (2)^{1/n}. \] The numerator approaches \(2\) since the term \(2x^{1/2 - 1/n}\) will dominate. ### Step 6: Final Calculation Thus, we have: \[ \lim_{x \to \infty} \frac{2}{(2)^{1/2}} = \frac{2}{\sqrt{2}} = \sqrt{2}. \] ### Conclusion The final answer is: \[ \sqrt{2}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(lim)_(xvecoo)(2. x^(1//2)+3. x^(1//3)+4. x^(1//4)++ndotx^(1//n))/((3x-4)^(1//2)+(3x-4)^(1-3)+(3x-4^)^(1//3)++(3x-4)^(1//n)) (here n in N ,ngeq2 ) is equal to 1 dot2/(sqrt(3)) 2. (sqrt(3))/2 3. 1/2 4. 1/(sqrt(3)) 5. 2

Evaluate lim_(xto0) ((x+2)^(1//3)-2^(1//3))/(x)

The value of lim_(x to oo)((1+3x)/(2+3x))^((1-sqrt(x))/(1-x)) is

lim_(x->oo)((1^(1/x) +2^(1/x) +3^(1/x) +...+n^(1/x))/n)^(nx) is equal to

Evaluate lim_(xto0)((1+5x^(2))/(1+3x^(2)))^(1//x^(2))

Evaluate : lim_(xto 0 ) ((x+2)/(x+1))^(x+3)

The value of lim_(xto0)((1^(x)+2^(x)+3^(x)+…………+n^(x))/n)^(a//x) is

Evauate lim_(xto1) (x^(4)-3x^(4)+2)/(x^(3)-5x^(2)+3x+1).

Evaluate: lim_(xrarroo) (5x^(2)+3x+1)/(3x^(2)+2x+4)

lim_(xto0)(x(z^(2)-(z-x)^(2))^(1//3))/([(8 x z -4x^(2))^(1//3)+(8x z)^(1//3)]^(4)) is