Home
Class 12
MATHS
If f(x)=x^3+4x^2+lambdax+1 is a monotoni...

If `f(x)=x^3+4x^2+lambdax+1` is a monotonically decreasing function of `x` in the largest possible interval `(-2,-2/3)dot` Then `lambda=4` (b) `lambda=2` `lambda=-1` (d) `lambda` has no real value

A

`lambda = 4`

B

`lambda = 2`

C

` lambda = -1`

D

`lambda` has no real value

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x^3+4x^2+lambdax+1 is a monotonically decreasing function of x in the largest possible interval (-2,-2/3)dot Then (a) lambda=4 (b) lambda=2 lambda=-1 (d) lambda has no real value

If f(x)=x^3+4x^2+lambdax+1 is a monotonically decreasing function of x in the largest possible interval (-2,-2/3)dot Then (a ) lambda=4 (b) lambda=2 (c) lambda=-1 (d) lambda has no real value

If f(x)=x^3+4x^2+ax+5 is a monotonically decreasing function of x in the largest possible interval (-2,-2//3), then the value of a is

If f(x)=2x^3+9x^2+lambdax+20 is a decreasing function fo x in the largest possible interval (-2,-1) then lambda =

Function f(x)=cosx-2\ lambda\ x is monotonic decreasing when (a) lambda>1//2 (b) lambda 2

If A satisfies the equation x^3-5x^2+4x+lambda=0 , then A^(-1) exists if (a) lambda!=1 (b) lambda!=2 (c) lambda!=-1 (d) lambda!=0

If the equation x^(3)-6x^(2)+9x+lambda=0 has exactly one root in (1, 3), then lambda belongs to the interval

If ( lambda^(2) + lambda - 2)x^(2)+(lambda+2)x lt 1 for all x in R , then lambda belongs to the interval :

Of f(x)=2/(sqrt(3))tan^(-1)((2x+1)/(sqrt(3)))-log(x^2+x+1)(lambda^2-5lambda+3)x+10 is a decreasing function for all x in R , find the permissible values of lambdadot

Of f(x)=2/(sqrt(3))tan^(-1)((2x+1)/(sqrt(3)))-log(x^2+x+1)(lambda^2-5lambda+3)x+10 is a decreasing function for all x in R , find the permissible values of lambdadot