Home
Class 12
MATHS
If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t...

If `x=(1-t^(2))/(1+t^(2))` and `y=(2t)/(1+t^(2))`, then `(dy)/(dx)` is equal to

A

`- ( y )/(x ) `

B

`(y )/( x )`

C

`-( x )/( y ) `

D

` (x )/( y) `

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given the parametric equations \(x = \frac{1 - t^2}{1 + t^2}\) and \(y = \frac{2t}{1 + t^2}\), we can follow these steps: ### Step 1: Differentiate \(x\) and \(y\) with respect to \(t\) We start by differentiating both \(x\) and \(y\) with respect to \(t\). 1. **Differentiate \(x\)**: \[ x = \frac{1 - t^2}{1 + t^2} \] Using the quotient rule: \[ \frac{dx}{dt} = \frac{(1 + t^2)(-2t) - (1 - t^2)(2t)}{(1 + t^2)^2} \] Simplifying the numerator: \[ = \frac{-2t(1 + t^2) - 2t(1 - t^2)}{(1 + t^2)^2} = \frac{-2t - 2t^3 - 2t + 2t^3}{(1 + t^2)^2} = \frac{-4t}{(1 + t^2)^2} \] 2. **Differentiate \(y\)**: \[ y = \frac{2t}{1 + t^2} \] Again using the quotient rule: \[ \frac{dy}{dt} = \frac{(1 + t^2)(2) - (2t)(2t)}{(1 + t^2)^2} = \frac{2 + 2t^2 - 4t^2}{(1 + t^2)^2} = \frac{2 - 2t^2}{(1 + t^2)^2} = \frac{2(1 - t^2)}{(1 + t^2)^2} \] ### Step 2: Find \(\frac{dy}{dx}\) Now we can find \(\frac{dy}{dx}\) using the chain rule: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{\frac{2(1 - t^2)}{(1 + t^2)^2}}{\frac{-4t}{(1 + t^2)^2}} = \frac{2(1 - t^2)}{-4t} = \frac{-(1 - t^2)}{2t} \] ### Step 3: Simplify the expression Thus, we have: \[ \frac{dy}{dx} = -\frac{1 - t^2}{2t} \] ### Step 4: Final expression in terms of \(x\) and \(y\) To express \(\frac{dy}{dx}\) in terms of \(x\) and \(y\): From the original equations, we know: - \(x = \frac{1 - t^2}{1 + t^2}\) - \(y = \frac{2t}{1 + t^2}\) We can express \(1 - t^2\) and \(2t\) in terms of \(x\) and \(y\): - \(1 - t^2 = x(1 + t^2)\) - \(2t = y(1 + t^2)\) From \(y = \frac{2t}{1 + t^2}\), we can express \(t\) in terms of \(y\) and \(x\): \[ t = \frac{y(1 + t^2)}{2} \] Substituting back into the expression for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = -\frac{x(1 + t^2)}{2t} \] ### Final Result Thus, the final answer is: \[ \frac{dy}{dx} = -\frac{x}{y} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=(1-t^2)/(1+t^2) and y=(2at)/(1+t^2) , then (dy)/(dx)=

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) , prove that dy/dx+x/y=0

If x=a((1+t^2)/(1-t^2))"and"y=(2t)/(1-t^2),"f i n d"(dy)/(dx)

If sinx=(2t)/(1+t^2) , tany=(2t)/(1-t^2) , find (dy)/(dx) .

If sinx=(2t)/(1+t^2) , tany=(2t)/(1-t^2) , find (dy)/(dx) .

If x=(2t)/(1+t^2) , y=(1-t^2)/(1+t^2) , then find (dy)/(dx) .

If x = t + (1)/(t) "and " y = t - (1)/(t) . "then" (dy)/(dx) is equal to

If x=(1+t)/(t^3),y=3/(2t^2)+2/t , then x((dy)/(dx))^3-(dy)/(dx) is equal to (a) 0 (b) -1 (c) 1 (d) 2

"If "x=(2t)/(1+t^(2)),y=(1-t^(2))/(1+t^(2))," then find "(dy)/(dx)" at "t=2.

If t a n y=(2^x)/(1+2^(2x+1)),t h e n(dy)/(dx) at x=0 is