Home
Class 12
MATHS
Let A be a matrix of order 3 xx 3 such ...

Let A be a matrix of order ` 3 xx 3 `such that det ( A)= 2 , `B = 2A^(-1)` and `C = (( adjA))/(root(3)(16))`,then the value of `det(A^(3) B^(2) C^(3))` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \det(A^3 B^2 C^3) \) given that \( \det(A) = 2 \), \( B = 2A^{-1} \), and \( C = \frac{\text{adj}(A)}{\sqrt[3]{16}} \). ### Step-by-Step Solution: 1. **Calculate \( \det(B) \)**: \[ B = 2A^{-1} \] Using the property of determinants, we have: \[ \det(B) = \det(2A^{-1}) = 2^3 \det(A^{-1}) = 8 \cdot \frac{1}{\det(A)} = 8 \cdot \frac{1}{2} = 4 \] 2. **Calculate \( \det(C) \)**: \[ C = \frac{\text{adj}(A)}{\sqrt[3]{16}} \] The determinant of the adjugate of a matrix is given by: \[ \det(\text{adj}(A)) = \det(A)^{n-1} \quad \text{(where \( n \) is the order of the matrix)} \] For a \( 3 \times 3 \) matrix: \[ \det(\text{adj}(A)) = \det(A)^{3-1} = \det(A)^2 = 2^2 = 4 \] Therefore, \[ \det(C) = \frac{\det(\text{adj}(A))}{\sqrt[3]{16}} = \frac{4}{\sqrt[3]{16}} = \frac{4}{2^{4/3}} = 4 \cdot 2^{-4/3} = 2^{2} \cdot 2^{-4/3} = 2^{2 - 4/3} = 2^{6/3 - 4/3} = 2^{2/3} \] 3. **Calculate \( \det(A^3) \)**: \[ \det(A^3) = (\det(A))^3 = 2^3 = 8 \] 4. **Combine the determinants**: Now we can find \( \det(A^3 B^2 C^3) \): \[ \det(A^3 B^2 C^3) = \det(A^3) \cdot \det(B^2) \cdot \det(C^3) \] First, calculate \( \det(B^2) \): \[ \det(B^2) = (\det(B))^2 = 4^2 = 16 \] Next, calculate \( \det(C^3) \): \[ \det(C^3) = (\det(C))^3 = (2^{2/3})^3 = 2^{2} = 4 \] 5. **Final calculation**: Now, substituting back into the determinant product: \[ \det(A^3 B^2 C^3) = 8 \cdot 16 \cdot 4 \] Calculate: \[ 8 \cdot 16 = 128 \] Then, \[ 128 \cdot 4 = 512 \] Thus, the final answer is: \[ \boxed{512} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let A be a matrix of order 3xx3 such that |A|=3 . Let B=3A^(-1) and C =(adjA)/(2) , then the value of |A^(2)B^(3)C^(4)| is

If A is a matrix of order 3, then det(kA) is

Let A be a square matrix of order 3 such that det. (A)=1/3 , then the value of det. ("adj. "A^(-1)) is

Let A be any 3xx2 matrix. Then prove that det. (A A^(T))=0 .

If A is a square matrix of order 3 such that |A|=2 , then |(adjA^(-1))^(-1)| is

Let A be a matrix of order 3, such that A^(T)A=I . Then find the value of det. (A^(2)-I) .

If A is a square matrix of order 3 such that abs(A)=2, then abs((adjA^(-1))^(-1)) is

Let A and B are two square matrices of order 3 such that det. (A)=3 and det. (B)=2 , then the value of det. (("adj. "(B^(-1) A^(-1)))^(-1)) is equal to _______ .

If det, (A-B) ne 0, A^(4)=B^(4), C^(3) A=C^(3)B and B^(3)A=A^(3)B , then find the value of det. (A^(3)+B^(3)+C^(3)) .

Let A be a square matrix of order 3\ xx\ 3 . Write the value of |2A| , where |A|=4 .